

Volume 79 (2023)
Supporting information for article:

The catalytic domains of Streptococcus mutans glucosyltransferases: a structural analysis

Norbert Schormann, Manisha Patel, Luke Thannickal, Sangeetha Purushotham, Ren Wu, Joshua Mieher, Hui Wu and Champion Deivanayagam

Figure S1 GtfC versus GtfB. Superposition of GtfB-CD shown in light blue (this study) and GtfC-CD (3AIC) shown in yellow. Acarbose binding to the active site is also shown.

Figure S2 Extra Helices in Domain A of GtfB-CD. GtfB-CD is shown in light blue, and the two additional helices present on GtfB are shown in salmon. These residues span GtfB's $\alpha 4$ ' helix are residues 566-577 and $\alpha 4 "$ residues 588-603.

Figure S3 2D structure of acarbose and assignment to subsites in GtfB-CD based on crystal structures.
4,6-dideoxy-4-\{[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)cyclohex-2-en-1-yl]amino \}-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose (AC1-GLC-GLC).

Figure S4 GtfB-CD in complex with acarbose in surface representation colored by electrostatic potential. Surface diagram colored by electrostatic potential for GtfB-CD (entire catalytic domain and close-up of pocket), where acarbose is shown in a green stick model. Contours for the electrostatic potential are $-5 k T$ in red and $+5 k T$ in blue.

Figure S5 Map quality of acarbose in chain A of orthorhombic GtfB-CD (PDB8FK4). Cyan: 2Fo-Fc map at 1σ contour leve. Yellow: Fo-Fc polder omit map at 3σ contour level

Figure S6 Figure S6. Map quality of acarbose in chain A of tetrameric GtfB-CD (PDB 8FJC). Cyan: 2Fo-Fc map at 1σ contour level. Yellow: Fo-Fc polder omit map at 3σ contour level

Figure S7 Sucrose modeling and comparison with acarbose binding.

Table S1 Active site and potential polymerization site residues in GtfB-CD, GtfC-CD and GtfD-CD

GtfB-CD	GtfC-CD	GtfD-CD
Asp451, Glu489, Asp562	Asp477, Glu515, Asp588	Asp465, Glu503, Asp584
Lys523, Asp564, His611	Lys549, Asp593, His637	Arg537, Thr589, Gln633

Second row: Active site residues.
Third row: Potential polymerization site residues.

Table S2 Interactions of modelled sucrose with GtfB-CD residues
A. Hydrogen bonds

GtfB	GtfB	Distance	SUC
Residue	Atom	$[\AA]$	Atom
Arg449	NH2	3.30	O2
Asp451	OD2	2.95	O6
Trp491	NE1	3.27	O3'
His561	NE2	2.91	O3
Gln934	NE2	2.93	O6

The distance cutoff for hydrogen bonds here is $3.3 \AA$. Note that atoms in the fructosyl moiety are numbered O6', $\mathrm{C}^{\prime}, \mathrm{C} 5^{\prime}, \mathrm{C} 4^{\prime}, \mathrm{O} 4^{\prime}, \mathrm{C} 3^{\prime}, \mathrm{O} 3^{\prime}, \mathrm{C} 2^{\prime}, \mathrm{O} 2^{\prime}, \mathrm{C} 1^{\prime}, \mathrm{O} 1^{\prime}$ while atoms in the glucosyl moiety are labelled $\mathrm{O} 6, \mathrm{C} 6, \mathrm{C} 5, \mathrm{O} 5$, C4, O4, C3, O3, C2, O2, C1, O1.

B. Hydrophobic interactions

SUC interface residues
Leu356, Leu407, Leu408,
Ala452, Asn455, Glu469,
Asp562, Tyr584, Asn836,
Phe881, Asp883, Asn888,
Tyr890

Table S3 Experimental parameters for the GtfB-CD adherence to SRCR1

Analyte	Ligand	$\boldsymbol{k}_{\mathbf{a}}(\mathbf{1} / \mathbf{M s})^{\mathbf{a}}$	$\boldsymbol{k}_{\mathbf{d}}(\mathbf{1 / s})^{\mathbf{b}}$	$\boldsymbol{K}_{\mathrm{D}}(\mathbf{1} / \mathbf{M})^{\mathbf{c}}$	$\mathbf{R}_{\text {max }}(\mathbf{R U})^{\mathbf{d}}$	$\left.\mathbf{C h i}^{\mathbf{2}} \mathbf{(R U}^{\mathbf{2}}\right)$
GtfB-CD	SRCR1	$2.99 \mathrm{E}+03$	$1.52 \mathrm{E}-03$	$5.09 \mathrm{E}-07$	117.20	86.9

[^0]
[^0]: ${ }^{\mathrm{a}} k_{\mathrm{a}}$, association rate constant.
 ${ }^{\mathrm{b}} k_{\mathrm{d}}$, dissociation rate constant.
 ${ }^{\mathrm{c}} K_{\mathrm{D}}$, equilibrium dissociation constant.
 ${ }^{d} \mathrm{R}_{\text {max }}$, maximum analyte binding capacity. RU , response units.

