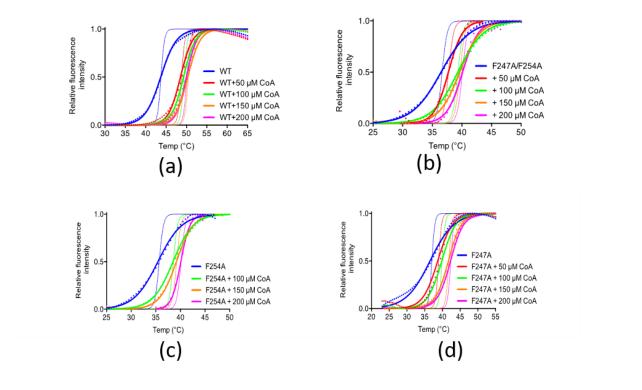
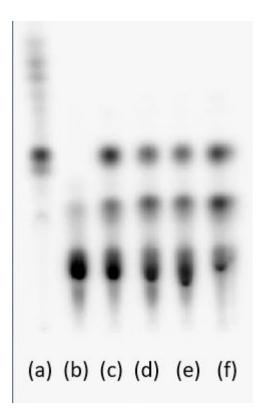


Volume 73 (2017)


Supporting information for article:

Biochemical and structural studies of mutants indicate concerted movement of the dimer interface and ligand-binding region of *Mycobacterium tuberculosis* pantothenate kinase


A. Paul, P. Kumar, A. Surolia and M. Vijayan

Mutant	Primers
F254A/F247A	5' GTGGGCGTGTGATTCCGGATCCGCGGCCGCCGTGGT3'
	5' ACGGCGGCCGCGGATCCGGAATCACACGCCCAC 3'
F254A	5' GCGTTCGCGGATCCGGAATCACACGCGCACCAC 3'
F247A	5' CGCACCACGGCGGCCGCGGATCCGGAATCACAC 3'

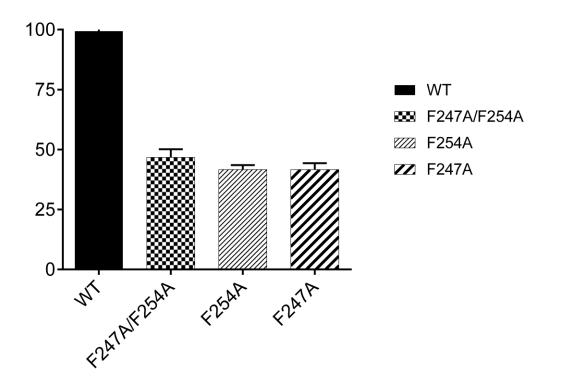

Table S1Primers used for generation of mutants

Figure S1 Thermal shift assay to estimate thermal stability and monitor CoA binding to wild-type and mutant *Mt*PanK proteins. The mutants exhibit reduced stability and limited binding to CoA as compared to the wild-type protein.

Figure S2 An autoradiogram of a TLC plate that was loaded with the supernatant of the reaction mixtures of *Mt*PanK and the mutants and resolved in butanol: acetic acid: water (5:2:4) solvent system. Lane (a) 1-¹⁴C pantothenate. Lane (b) $[\gamma^{32}$ -ATP]. Lanes (c-f) show formation of $[\gamma^{32}P]$ -phosphopantothenate from $[\gamma^{32}$ -ATP] and pantothenate by *Mt*PanK, the double mutant, F254A and F247A mutants respectively.

Figure S3 Relative activity of the mutants with respect to wild type *Mt*PanK measured using coupled assay.