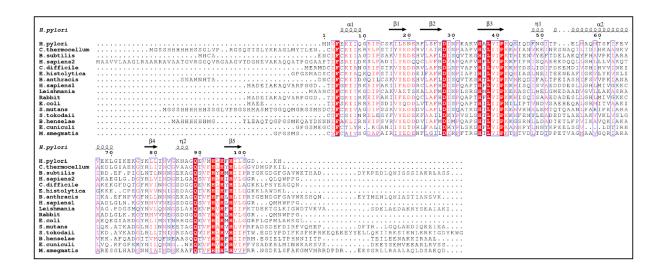


Volume 72 (2016)

Supporting information for article:


Crystal structure of the HINT protein from *Helicobacter pylori* 

K. F. Tarique, S. Devi, S. A. Abdul Rehman and S. Gourinath

## **Table S1**Structural superposition and percentage sequence identities of HpHINT withhomologous HINT structures

| PDB ID of the | Number of alpha carbons | RMSD (Å) | % sequence identity |
|---------------|-------------------------|----------|---------------------|
| protein       | aligned                 |          |                     |
| 3N1S          | 101                     | 1.6      | 36                  |
| 1XQU          | 101                     | 1.2      | 46                  |
| 4EGU          | 101                     | 1.3      | 38                  |
| 2EO4          | 99                      | 1.4      | 31                  |
| 3LB5          | 100                     | 1.5      | 29                  |
| 300M          | 99                      | 1.6      | 34                  |
| 1Y23          | 99                      | 1.5      | 38                  |
| 3IMI          | 99                      | 1.4      | 40                  |
| 3KSV          | 100                     | 1.6      | 37                  |
| 3TW2          | 100                     | 1.3      | 39                  |
| 301Z          | 100                     | 1.3      | 38                  |
| 30J7          | 98                      | 1.4      | 40                  |
| 3L7X          | 100                     | 1.5      | 34                  |
| 3R6F          | 95                      | 1.7      | 32                  |

The organisms from which these proteins were obtained are listed in Figure 7.



**Figure S1** Multiple sequence alignment. Multiple sequence alignment of HpHINT with other members of the HINT family taken from the PDB. The alignment was generated by ESPript (Gouet *et al.*, 2003) with clustalW (McWilliam *et al.*, 2013). Secondary structural elements of HpHINT as determined by the "Defined Secondary Structure Prediction" (DSSP) are shown above the sequences ( $\alpha$ -helices,  $\beta$ -strands,  $\eta$ -3<sub>10</sub> helices and TT-  $\beta$  turn). All members of this family share a similar core structure and conserved residues essential for substrate binding and hydrolysis, in particular H-X-H-X-H just following beta strand 4. (red: totally conserved and pink: partially conserved). The PDB IDs for these structures and the organisms to which they belong are listed in Figure 6.