Volume 80 (2024)

Supporting information for article:

Synthesis and crystal structure of $\mathrm{Ba}_{2} \mathrm{Y}_{0.87(1)} \mathrm{Mn}_{1.71(1)} \mathrm{Te}_{5}$

Sweta Yadav and Jai Prakash

Synthesis of polycrystalline $\mathrm{Ba}_{2} \mathbf{Y}_{\mathbf{0 . 8 7}} \mathbf{M n}_{1.71} \mathbf{T e}_{5}$ sample

We attempted to synthesize a pure-phase polycrystalline sample with the loaded composition of $\mathrm{Ba}_{2} \mathrm{Y}_{0.87} \mathrm{Mn}_{1.71} \mathrm{Te}_{5}$ for physical property measurements. Multiple reactions with diverse temperature profiles were loaded to optimize the conditions to obtain a pure phase $\mathrm{Ba}_{2} \mathrm{Y}_{0.87} \mathrm{Mn}_{1.71} \mathrm{Te}_{5}$ sample. Regrettably, all the products of these reactions were multiphasic. We have got the best quality sample using the following synthesis procedure: the reactants $\mathrm{Ba}(253.8 \mathrm{mg}, 1.848 \mathrm{mmol}), \mathrm{Y}(55.1 \mathrm{mg}, 0.619 \mathrm{mmol}), \mathrm{Mn}(101.5 \mathrm{mg}$, $1.846 \mathrm{mmol})$, and $\mathrm{Te}(589.6 \mathrm{mg}, 4.621 \mathrm{mmol})$ were weighed inside the glove box. The reactants were loaded into a fused silica tube inside the Ar-filled glove box and then vacuum sealed (ca. $10^{-4} \mathrm{Torr}$) using the flame torch. The reaction tube was heated in two segments inside the programmable muffle furnace. Firstly, the furnace's temperature was increased to 1273 K in 24 h and dwelled there for 168 h . It was then cooled to 1073 K in 12 h , where it was kept for 96 h before turning off the furnace. The reaction tube was then broken to obtain a reddish-black colored lump, which was then homogenized into a fine powder inside the Ar-filled glove box. The powder was pelletized and then vacuum-sealed inside the fused silica tube using a high-pressure hydraulic press. The tube was heated at 1223 K in 18 h and annealed there for 168 h before shutting off the furnace. The obtained pellet was then homogenized into a fine powder for phase analysis using the powder X-ray diffraction method. The same sample was used to collect optical absorption dataset.

Powder X-ray diffraction (PXRD) study

The phase purities of the polycrystalline samples were evaluated by the PXRD studies. The finely ground samples of $\mathrm{Ba}_{2} \mathrm{Y}_{0.87} \mathrm{Mn}_{1.71} \mathrm{Te}_{5}$ were used to collect the PXRD data at room temperature using a PAN analytical empyrean diffractometer with a $\mathrm{Cu}-\mathrm{K} \alpha$ radiation source $(\lambda=1.5406 \AA$). The PXRD data were recorded using a $\theta-2 \theta$ geometry over a 2θ range of 10° to 70° with a working voltage and current of 40 kV and 30 mA , respectively. The phase analyses of the products were done using Match3! Software (New Match! version 3.13).

UV-visible-near infrared (UV-vis-NIR) absorption study

An optical bandgap study of the mixed-phase polycrystalline sample with the loaded composition of $\mathrm{Ba}_{2} \mathrm{Y}_{0.87} \mathrm{Mn}_{1.71} \mathrm{Te}_{5}$ was carried out at room temperature (298(2) K) using a JASCO V-770 UV-vis-NIR spectrophotometer. A dried BaSO_{4} powder was used as a standard reference for the absorption study, and the dataset was collected in the diffuse reflectance mode over the wavelength range of $2400 \mathrm{~nm}(0.51 \mathrm{eV})$ to $340 \mathrm{~nm}(3.6 \mathrm{eV})$. Later, the Kubelka-Munk equation, $\alpha / S=(1-R) 2 / 2 R$, was used to transform the
reflectance data into absorption data (G. Kortüm, 1969). Here α, S, and R are the absorption coefficient, scattering coefficient, and reflectance, respectively. The direct optical band gap was calculated using the Tauc method, as shown in Fig. S1.

Fig. S1: The Tauc plot for the polycrystalline sample with the loaded composition of $\mathrm{Ba}_{2} \mathrm{Y}_{0.87} \mathrm{Mn}_{1.71} \mathrm{Te}_{5}$. The $\mathrm{Ba}_{2} \mathrm{MnTe}_{3}$ phase is present as the major phase in the sample.

Table S1 Atomic displacement parameters $\left(\AA^{2}\right)$ for the $\mathbf{B a}_{2} \mathbf{Y}_{0.87(1)} \mathbf{M n}_{1.71(1)} \mathbf{T e}_{5}$.

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.02203(17)$	$0.01482(15)$	$0.03531(19)$	0.000	$0.00659(14)$	0.000
Y1	$0.0221(5)$	$0.0235(5)$	$0.0247(5)$	0.000	$0.0091(3)$	0.000
Mn 1	$0.0215(5)$	$0.0175(5)$	$0.0286(5)$	0.000	$0.0124(4)$	0.000
Te1	$0.02063(18)$	$0.01460(16)$	$0.03142(19)$	0.000	$0.01026(14)$	0.000
Te2	$0.01764(17)$	$0.01892(16)$	$0.01930(15)$	0.000	$0.00761(12)$	0.000
Te 3	$0.0190(2)$	$0.0204(2)$	$0.0179(2)$	0.000	$0.00628(17)$	0.000

Table S2 Geometric parameters $\left(\AA{ }^{\AA},{ }^{\boldsymbol{o}}\right.$) for the $\mathrm{Ba}_{2} \mathbf{Y}_{0.87(1)} \mathbf{M n}_{1.71(1)} \mathbf{T e}_{5 .}$.

$\mathrm{Ba} 1-\mathrm{Te} 3^{\mathrm{i}}$	$3.4808(3)$	$\mathrm{Y} 1-\mathrm{Te} 1$	$3.0683(4)$

$\mathrm{Ba} 1-\mathrm{Te} 3$	3.4808 (3)	$\mathrm{Y} 1-\mathrm{Te} 2^{\text {vii }}$	3.1125 (3)
$\mathrm{Ba} 1-\mathrm{Te} 1^{\text {ii }}$	3.5262 (4)	Y1-Te2 ${ }^{\text {viii }}$	3.1125 (3)
Ba1-Te1 ${ }^{\text {iii }}$	3.5262 (4)	$\mathrm{Y} 1-\mathrm{Te} 2^{\text {ix }}$	3.1125 (3)
$\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iv }}$	3.5602 (5)	$\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	3.1125 (3)
$\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{ii}}$	3.6181 (4)	$\mathrm{Mn} 1-\mathrm{Te} 3^{\text {xi }}$	2.6784 (10)
$\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iii}}$	3.6181 (4)	Mn1-Te1 ${ }^{\text {xii }}$	2.7070 (6)
$\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	4.5782 (3)	Mn1-Te1 ${ }^{\text {xi }}$	2.7070 (6)
$\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	4.5782 (3)	$\mathrm{Mn} 1-\mathrm{Te} 2$	2.7531 (11)
$\mathrm{Y} 1-\mathrm{Te} 1^{\text {vi }}$	3.0683 (4)		
Te3 ${ }^{\text {i }}$ - ${ }^{\text {Ba1-Te3 }}$	82.239 (9)	$\mathrm{Te} 2^{\text {viii }}-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	85.307 (10)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 1^{\text {ii }}$	135.294 (14)	$\mathrm{Te} 2^{\mathrm{ix}}-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	180.000 (12)
Te3-Ba1-Te1 ${ }^{\text {ii }}$	81.772 (8)	Te3 ${ }^{\text {xi }}-\mathrm{Mn} 1-\mathrm{Te} 1^{\text {xii }}$	111.46 (3)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 1^{\text {iii }}$	81.772 (8)	Te3 ${ }^{\text {xi }}-\mathrm{Mn} 1-\mathrm{Te} 1^{\text {xi }}$	111.46 (3)
Te3-Ba1-Te $1^{\text {iii }}$	135.294 (14)	Te1 ${ }^{\text {xii }}-\mathrm{Mn} 1-\mathrm{Te} 1^{\text {xi }}$	115.48 (4)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 1^{\text {iii }}$	80.958 (12)	$\mathrm{Te} 3^{\text {xi }}-\mathrm{Mn} 1-\mathrm{Te} 2$	100.29 (3)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iv }}$	137.957 (5)	Te1 ${ }^{\text {xii }}-\mathrm{Mn} 1-\mathrm{Te} 2$	108.49 (3)
Te3-Ba1-Te2 ${ }^{\text {iv }}$	137.957 (5)	Te1 ${ }^{\text {xi }}-\mathrm{Mn} 1-\mathrm{Te} 2$	108.49 (3)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iv}}$	74.903 (10)	$\mathrm{Mn} 1^{\text {viii- }}$ Te1-Mn1 ${ }^{\text {ix }}$	115.48 (4)
$\mathrm{Te} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iv }}$	74.903 (10)	Mn1 ${ }^{\text {viii }}-\mathrm{Te} 1-\mathrm{Y} 1$	79.20 (2)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{ii}}$	121.448 (12)	$\mathrm{Mn} 1{ }^{\text {ix }}-\mathrm{Te} 1-\mathrm{Y} 1$	79.20 (2)
Te3-Ba1-Te2 ${ }^{\text {ii }}$	71.916 (8)	Mn1 ${ }^{\text {viii- }}$ Te1-Ba1 ${ }^{\text {ii }}$	161.81 (2)
Te1 ${ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {ii }}$	92.276 (8)	$\mathrm{Mn} 1^{\mathrm{ix}}-\mathrm{Te} 1-\mathrm{Ba} 1^{\mathrm{ii}}$	81.497 (19)
$\mathrm{Te} 1^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {2i }}$	149.445 (13)	$\mathrm{Y} 1-\mathrm{Te} 1-\mathrm{Ba} 1^{\text {ii }}$	98.816 (11)

$\mathrm{Te} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Te} 2^{2 i}$	74.567 (11)	Mn1 ${ }^{\text {viii }}-\mathrm{Te} 1-\mathrm{Ba} 1^{\text {iii }}$	81.497 (19)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iii }}$	71.916 (8)	$\mathrm{Mn} 1^{\mathrm{ix}}-\mathrm{Te} 1-\mathrm{Ba} 1^{\text {iii }}$	161.81 (2)
Te3-Ba1-Te2 ${ }^{\text {iii }}$	121.448 (12)	Y1-Te1-Ba1 ${ }^{\text {iii }}$	98.816 (11)
$\mathrm{Te} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\mathrm{iii}}$	149.445 (13)	$\mathrm{Ba} 1^{\mathrm{ii}}-\mathrm{Te} 1-\mathrm{Ba} 1^{\text {iii }}$	80.958 (12)
Te1 ${ }^{\text {iiii }}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iii }}$	92.276 (8)	Mn1-Te2-Y1 ${ }^{\text {xii }}$	77.746 (16)
$\mathrm{Te} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Te} 2{ }^{\text {iii }}$	74.567 (10)	$\mathrm{Mn} 1-\mathrm{Te} 2-\mathrm{Y} 1^{\text {xi }}$	77.746 (16)
$\mathrm{Te} 2^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Te} 2^{\text {iii }}$	78.496 (12)	$\mathrm{Y} 1^{\text {xii }}-\mathrm{Te} 2-\mathrm{Y} 1^{\text {xi }}$	94.693 (10)
Te3 ${ }^{\text {i }}$ - $\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	48.880 (5)	Mn1-Te2-Ba1 ${ }^{\text {xiii }}$	172.50 (3)
Te3-Ba1-Ba1 ${ }^{\text {i }}$	131.120 (4)	Y1 ${ }^{\text {xii }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {xiii }}$	97.265 (9)
Tel ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	130.479 (6)	Y1 ${ }^{\text {xi }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {xiii }}$	97.265 (9)
Te $1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	49.521 (6)	$\mathrm{Mn} 1-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {ii }}$	80.273 (19)
$\mathrm{Te} 2^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	90.0	$\mathrm{Y} 1^{\mathrm{xii}}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {ii }}$	89.148 (7)
$\mathrm{Te} 2^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	129.248 (6)	Y1 ${ }^{\text {xi- }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {ii }}$	156.314 (12)
$\mathrm{Te} 2^{\mathrm{iii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	50.752 (6)	Ba1 ${ }^{\text {xiii }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {ii }}$	105.434 (11)
Te3 ${ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	131.120 (5)	Mn1-Te2-Ba1 ${ }^{\text {iii }}$	80.273 (19)
Te3-Ba1-Ba1 ${ }^{\text {v }}$	48.880 (5)	Y1 ${ }^{\text {xii }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	156.314 (12)
Te1 ${ }^{\text {iii }}$ - ${ }^{\text {ala }}-\mathrm{Ba} 1^{\mathrm{v}}$	49.521 (6)	$\mathrm{Y} 1^{\mathrm{xi}}-\mathrm{Te} 2-\mathrm{Ba} 1{ }^{\text {iii }}$	89.148 (6)
Te1 ${ }^{\text {iiii-Ba1-Ba1 }}{ }^{\text {v }}$	130.479 (6)	Ba1 ${ }^{\text {xiii }}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	105.434 (11)
$\mathrm{Te} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	90.0	$\mathrm{Ba} 1{ }^{\mathrm{ii}}-\mathrm{Te} 2-\mathrm{Ba} 1^{\text {iii }}$	78.496 (11)
$\mathrm{Te} 2^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	50.752 (6)	$\mathrm{Mn1}{ }^{\text {ii }}-\mathrm{Te} 3-\mathrm{Mn} 1^{\text {ix }}$	180.0
Te2 ${ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	129.248 (6)	$\mathrm{Mn} 1^{\mathrm{ii}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\text {v }}$	83.888 (18)
$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	180.0	$\mathrm{Mn} 1^{\text {ix }}-\mathrm{Te} 3-\mathrm{Ba} 1^{\mathrm{v}}$	96.112 (18)
Te1 ${ }^{\text {vi}}-\mathrm{Y} 1-\mathrm{Te} 1$	180.0	$\mathrm{Mn} 1^{\text {iii }}-\mathrm{Te} 3-\mathrm{Ba} 1^{\text {xiv }}$	96.112 (18)
Te1 ${ }^{\text {vi}}-\mathrm{Y} 1-\mathrm{Te} 2^{\text {vii }}$	91.596 (9)	$\mathrm{Mn} 1^{\mathrm{ix}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\text {xiv }}$	83.888 (18)

Te1-Y1-Te2 ${ }^{\text {vii }}$	88.404 (9)	$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\text {xiv }}$	180.0
Te1 ${ }^{\text {vi- }}$ Y1-Te2 ${ }^{\text {viii }}$	88.404 (9)	$\mathrm{Mn} 1{ }^{\text {iii }}-\mathrm{Te} 3-\mathrm{Ba} 1^{\mathrm{xv}}$	96.112 (18)
Te1-Y1-Te2 ${ }^{\text {viii }}$	91.596 (9)	$\mathrm{Mn} 1^{\mathrm{ix}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\mathrm{xv}}$	83.888 (18)
Te2 ${ }^{\text {vii }}-\mathrm{Y} 1-\mathrm{Te} 2^{\text {viii }}$	180.000 (12)	$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{Ba} 1^{\mathrm{xv}}$	97.761 (9)
Te1 ${ }^{\text {vi}}-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{ix}}$	88.404 (8)	$\mathrm{Ba} 1^{\text {xiv }}-\mathrm{Te} 3-\mathrm{Ba} 1^{\mathrm{xv}}$	82.239 (9)
Te1-Y1-Te $2^{\text {ix }}$	91.596 (8)	Mn1 ${ }^{\text {ii }}-\mathrm{Te} 3-\mathrm{Ba} 1$	83.888 (18)
$\mathrm{Te} 2^{\text {vii }}-\mathrm{Y} 1-\mathrm{Te} 2^{\text {ix }}$	85.307 (10)	$\mathrm{Mn} 1{ }^{\mathrm{ix}}-\mathrm{Te} 3-\mathrm{Ba} 1$	96.112 (18)
Te2 ${ }^{\text {viii- }} \mathrm{Y} 1-\mathrm{Te} 2^{\text {ix }}$	94.693 (10)	$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Te} 3-\mathrm{Ba} 1$	82.239 (9)
Te ${ }^{\text {vi }}-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	91.596 (8)	Ba1 ${ }^{\text {xiv }}-\mathrm{Te} 3-\mathrm{Ba} 1$	97.761 (9)
$\mathrm{Te} 1-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	88.404 (8)	$\mathrm{Ba} 1^{\mathrm{xv}}-\mathrm{Te} 3-\mathrm{Ba} 1$	180.0
$\mathrm{Te} 2^{\text {vii }}-\mathrm{Y} 1-\mathrm{Te} 2^{\mathrm{x}}$	94.693 (10)		

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1 / 2,-y+1 / 2,-z+1$; (iii) $-x+1 / 2,-y-1 / 2,-z+1$; (iv) $x, y, z+1$; (v) $x, y+1$, z; (vi) $-x,-y,-z$; (vii) $-x+1 / 2,-y+1 / 2,-z$; (viii) $x-1 / 2, y-1 / 2, z$; (ix) $x-1 / 2, y+1 / 2, z$; (x) $-x+1 / 2,-y-1 / 2,-z$; (xi) $x+1 / 2, y-1 / 2, z$; (xii) $x+1 / 2, y+1 / 2, z$; (xiii) $x, y, z-1$; (xiv) $-x,-y,-z+1$; (xv) $-x,-y+1,-z+1$.

References

G. Kortüm (1969). Reflectance Spectroscopy, Springer, New York.

New Match! version 3.13 (Build 227) https://www.crystalimpact.com/news/20220314b.htm.

