

Volume 79 (2023)

Supporting information for article:

Perovskite-related structures of Ba_2YAIO_5 and the β and α

phases of Ba₆Y₂Al₄O₁₅ containing AlO₄ tetrahedra

Rayko Simura, Yamato Suzuki and Hisanori Yamane

Table S1

|--|

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0059 (3)	0.0086 (3)	0.0063 (3)	0	0.0024 (2)	0
Ba2	0.0093 (3)	0.0078 (3)	0.0062 (3)	0	0.0028 (2)	0
Y1	0.0062 (4)	0.0035 (4)	0.0049 (4)	0	0.0030 (4)	0
Al1	0.0059 (13)	0.0095 (14)	0.0023 (13)	0	0.0011 (12)	0
01	0.0212 (15)	0.0212 (15)	0.0207 (15)	0.0032 (9)	0.0090 (10)	-0.0024 (9)
O2	0.010 (3)	0.016 (4)	0.010 (4)	0	0.003 (3)	0
O3	0.007 (3)	0.014 (4)	0.008 (4)	0	0.000 (3)	0
O4	0.022(2)	0.023(2)	0.023(2)	-0.0012 (10)	0.0096 (12)	0.0011 (10)

Atomic displacement parameters (Å²) for β -Ba₆Y₂Al₄O₁₅

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}			
Bal	0.0078 (3)	0.0064 (3)	0.0084 (3)	0.0005 (4)	0.0012 (2)	0.0001 (2)			
Ba2	0.0069 (2)	0.0067 (3)	0.0077 (3)	0.0005 (4)	0.0006 (2)	0.00076 (18)			
Ba3	0.0092 (4)	0.0080 (4)	0.0094 (4)	0	0.0038 (4)	0			
Ba4	0.0105 (3)	0.0057 (4)	0.0078 (4)	0	-0.0031 (3)	0			
Y1	0.0070 (4)	0.0033 (5)	0.0047 (5)	-0.0007(7)	-0.0001 (3)	0.0001 (4)			
Al1	0.0047 (11)	0.0045 (14)	0.0062 (16)	-0.0005 (15)	0.0023 (11)	0.0008 (10)			
Al2	0.0055 (12)	0.0038 (15)	0.0048 (15)	-0.0011 (16)	0.0016 (11)	-0.0003 (14)			
01	0.009 (3)	0.010 (3)	0.011 (4)	0.001 (4)	-0.001 (3)	0.001 (3)			
O2	0.010 (4)	0.007 (3)	0.005 (3)	0.002 (3)	0.002 (4)	0.001 (2)			
O3	0.014 (4)	0.006 (4)	0.005 (3)	0.001 (4)	0.000 (4)	0.002 (3)			
O4	0.009 (4)	0.008 (4)	0.006 (4)	0.000 (4)	-0.002 (3)	0.003 (3)			
O5	0.013 (4)	0.007 (4)	0.008 (4)	0.000 (3)	-0.001 (3)	-0.005 (3)			
06	0.012 (3)	0.016 (4)	0.011 (4)	0.002 (3)	0.005 (3)	-0.001 (3)			
O7	0.007 (3)	0.011 (3)	0.014 (4)	-0.001 (4)	-0.001 (3)	0.000 (3)			
08	0.007 (4)	0.010 (5)	0.012 (5)	0	0.001 (4)	0			
Atomic displacement parameters ($Å^2$) for α -Ba ₆ Y ₂ Al ₄ O ₁₅									

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0151 (11)	0.0228 (7)	0.0240 (9)	0.0051 (8)	0.0067 (6)	0.0171 (8)
Ba2	0.0081 (9)	0.0238 (7)	0.0217 (6)	0.0032 (7)	0.0073 (5)	0.0101 (7)
Ba3	0.0262 (8)	0.0161 (3)	0.0110 (3)	-0.0020(7)	0.0032 (6)	-0.0064 (2)
Ba3B	0.0262 (8)	0.0161 (3)	0.0110 (3)	-0.0020(7)	0.0032 (6)	-0.0064 (2)
Y1	0.0064 (14)	0.0169 (15)	0.0089 (14)	0	0.0050 (9)	0
Y2	0.0062 (13)	0.0078 (12)	0.0022 (10)	0	-0.0011 (8)	0

Crystal structure of Ba_2YAIO_5 and structure of Ba_8 hexahedral layers containing YO_6 octahedra and AIO_3 tetrahedra drawn parallel to (a) (11-1) and (b) (-10-1) planes. These planes are representative of three equivalent planes: {11-1} = (11-1), (1-1-1), (-1-11), (-111) and {101} = (101), (-10-1).

Crystal structure of β -Ba₆Y₂Al₄O₁₅ and structure of Ba₈ hexahedral layers containing YO₆ octahedra and AlO₃ tetrahedra drawn parallel to (a) (0-13) and (b) (100) planes. These planes are representative of three equivalent planes: {013} = (013), (01-3), (0-13), (0-1-3) and {100} = (100), (-100).

Crystal structure of α -Ba₆Y₂Al₄O₁₅ and structure of Ba₈ hexahedral layers containing YO₆ octahedra and AlO₃ tetrahedra drawn parallel to (a) (010), (b) (-102) and (c) (-10-1) planes.

Powder X-ray diffraction patterns for (a) Ba₂Y_{0.85}Eu_{0.15}AlO₅ and (b) Ba₆Y_{1.7}Eu_{0.3}Al₄O₁₅.

Optical micrographs showing orange-red luminescence of (a) $Ba_2Y_{0.85}Eu_{0.15}AlO_5$ and (b) $\alpha\text{-}$ and

 β -Ba₆Y_{1.7}Eu_{0.3}Al₄O₁₅ powders in response to irradiation at 250 nm.