

Volume 79 (2023)

Supporting information for article:

Solvent influence on the crystal structures of new Cd tri-*tert*-butoxysilanethiolate complexes with 1,4-bis(3-aminopropyl)piperazine: luminescence and antifungal activity

Daria Kowalkowska-Zedler, Piotr Bruździak, Zbigniew Hnatejko, Renata Łyszczek, Anna Brillowska-Dąbrowska, Łukasz Ponikiewski, Bartosz Cieśla and Agnieszka Pladzyk

S1. Structural data

1	2
88.42(11)	
	99.26(10)
103.01(15)	106.89(8)
98.2(5)	
107.32(14)	111.36(8)
99.7(8)	
116.12(19)	
124.5(7)	
96.83(13)	
86.5(12)	
	107.26(8)
	109.68(8)
135.39(13)	120.28(3)
148.0(13)	
144.5(11)	
103.74(19)	104.26(5)
95.6(9)	
103.75(19)	110.61(5)
107.0(5)	
	1 88.42(11) 103.01(15) 98.2(5) 107.32(14) 99.7(8) 116.12(19) 124.5(7) 96.83(13) 86.5(12) 135.39(13) 148.0(13) 144.5(11) 103.74(19) 95.6(9) 107.0(5)

Table S1 Selected bond angles (°) for complexes 1 and 2.

Table S2 Selected bond distances (Å) for complexes 1 and 2.

Bond length [Å]	1	2
Cd1—N1	2.310(3)	2.301(3)
Cd1—N2	2.415(3)	
Cd1—N3		2.301(3)
Cd1—S1	2.428(4)	2.4675(12)
Cd1—S1A	2.56(2)	
Cd1—S2	2.468(5)	2.4597(10)
Cd1—S2A	2.309(10)	
Si1—S1	2.068(4)	2.0805(13)
Sil—SlA	2.22(2)	
Si2—S2	2.077(3)	2.0773(13)
Si2—S2A	2.146(18)	
Sil—O1	1.603(3)	1.630(2)

Sil—O2	1.635(3)	1.627(2)
Sil—O3	1.632(2)	1.639(2)
Si2—O4	1.636(2)	1.625(2)
Si2—O5	1.629(3)	1.647(2)
Si2—O6	1.626(3)	1.628(2)

Table S3Hydrogen bonds parameters for complexes 1 and 2.

	D—H…A	<i>D</i> —H [Å	H…A [Å]	<i>D</i> …A [Å]	∠DHA
1	N1—H1B…O4	0.84(5)	2.41(5)	3.115(4)	142(4)
	N1—H1A····S1 ^{a}	0.86(5)	2.70(5)	3.519(5)	159(4)
2	N1—H1A…N2	0.90(4)	2.24(4)	2.977(4)	139(3)
	N3—H3A…N4	0.96(4)	2.23(4)	2.996(4)	136(3)
	N1—H1B…O3	0.85(4)	2.39(4)	3.200(4)	160(3)
	N3—H3B…O5	0.90(5)	2.42(5)	3.256(4)	154(4)

Symmetry code(s): (a) -x+1, -y+1, -z+1;

Table S4Experimental and def2sv(p) calculated frequencies, and general assignments for observed IRbands in the FT-IR spectrum of 1 and 2 (stretching frequencies and fingerprint region). No scaling to thecalculated spectrum was applied.

Compound 1			Compound 2		
Experimental	Calculated	Assignment from	Experimental	Calculated	Assignment from
[cm ⁻¹]	[cm ⁻¹]	calculations	[cm ⁻¹]	[cm ⁻¹]	calculations
3331 (w)	3610	–NH ₂ asym. stretch	3293 (m)	3550 3536	–NH ₂ asym. stretch
3246 (w)	3501	-NH ₂ sym. stretch	3227 (w) 3152 (w)	3457 3447	-NH ₂ sym. stretch
2958 (vs)	3110	–CH ₃ asym. stretch	2968 (vs)	3100 3032 2963	C-H asym. stretch from CH ₃ (<i>t</i> Bu) -CH ₂ - asym. stretch (BAPP)
2930 (m)	3050	-CH ₂ - asym. stretch (BAPP) C-H sym. stretch from CH ₃ (<i>t</i> Bu)	2934 (m) 2925 (m)		-CH ₂ - sym. stretch (BAPP ring and tail) -CH ₃ sym. stretch
2859 (w)	2972, 2924	-CH ₂ - sym. stretch (BAPP ring and tail)	2872 (m) 2820 (m) 2673 (vw)	2860 2821	-CH ₂ - sym. stretch (BAPP ring and tail)
1584 (w)	1596	-NH ₂ scissoring	1590 (w)	1601	-NH ₂ scissoring

1466-1430	1432	-CH ₂ - scissoring	1460-1430 (m)	1423	-CH ₂ - scissoring
					-CH3 scissoring
1383 (m)	1336	-CH ₃ umbrella	1383 (m)	1336	-CH ₃ umbrella
1361 (s)		deformation (tBu)	1361 (s)		deformation (tBu)
		-CH ₂ - wagging			-CH ₂ - wagging
		(BAPP ring and tail)			(BAPP ring and tail)
			1347 (w)	1344	-CH ₂ - twisting
	1297	-CH ₂ - twisting	1310 (vw)		C–N stretch,
			1301 (w)	1201	$-CH_2$ - twisting
			1270 (w)	1291	-CH ₂ - twisting and
			1263 (w)		wagging
1231 (s)	1227	-CH ₃ wagging	1239 (m)	1250	-CH ₂ - twisting
1210 (m)	1198	(deformation <i>t</i> Bu)	1204 (m)	1193	(BAPP ring and ring)
					-CH ₃ wagging
					deformation of tBu
1175 (s)	1151	C–N stretch	1185 (s)		–NH ₂ twisting
1137 (w)			1146 (w)		C–N stretch
1120 (w)			1128 (w)		
-	-	- 	1104 (w)	1002	-NH ₂ wagging
1091 (VW) 1083 (VW)	1083	SI-O stretch	-	1092	S1–O stretch
1005 (VW)					Si-O-C asym.
					stretch,
1036 (vs)	1038	$-CH_2$ scissoring	1040 (vs)	1030	-CH ₂ - stocking
		erry sensoring			(BAPP)
1012 (a)	1000	C C twisting (Du)	1004 (yz)		-NH ₂ wagging
1012 (8)	1009	C-C twisting (<i>i</i> Bu)	1004 (VS)		-CH3 twisting
998 (vs)	-	Si-O-C asym. stretch	987 (vs)	965	C-C stretch BAPP
993 (vs)			961 (m)		ring
974 (m) 952 (m)	972	-NH ₂ wagging	940 (w)	914	-NH ₂ twisting
882 (w)	896	-CH ₂ - twisting		874	-NH ₂ wagging
		(BAPP tail)			
858 (vw)	836	Si–O stretch,	842 (vw)	832	C-C stretch ($tBuO$)
<u>912 (m)</u>	808	C-C stretch (<i>t</i> Bu)	8 20 (a)		NUL gaiaganing
$\frac{813}{(m)}$		C_{-C} stretch (<i>t</i> Bu)	820 (S) 802 (s)	705	-INH ₂ scissoring
, , , , , (iii)		$-CH_2$ - twisting	002 (8)	175	
		(BAPP tail)			
734 (w)			770 (m)		
723 (vw)	711	Si–O–C stretch	728 (w)	723	Si–O–C stretch
688 (m)	672	Si–S stretch,	683 (s)	681	S1–S stretch,
0//(m) 657 (m)		deformation of tBu	000 (S)	002 614	deformation of tBu
607 (vw)				017	
535 (m)	558	Si–S stretch	544 (s)	568	Si–S stretch

S2. Supporting figures

Figure S1 1 H-NMR spectrum of 1 crystals dissolved in CH₃OH-d₄ with integration.

Figure S2 ¹H-NMR spectrum of 1 crystals dissolved in CH₃OH-d₄ with integration in the range from 0 ppm to 3 ppm.

Figure S3 ¹H-NMR spectrum of **2** crystals dissolved in toluene-d₆ with integration.

Figure S4 ¹H-NMR spectrum of **2** crystals dissolved in toluene- d_6 with integration in the range from 0 ppm to 3 ppm.

Figure S5 Partial packing view of **1**, showing the intermolecular interactions. Dashed lines indicate hydrogen bonds.

Figure S6 Partial packing view of **2**, showing the intermolecular interactions. Dashed lines indicate hydrogen bonds.

Figure S7 Geometry of Cd centre in compound 1 with angles and their values indicated.

Figure S8 Geometry of Cd centre in compound 2 with angles and their values indicated.

Figure S9 Experimental FT-IR spectra of complexes 1 (orange line) and 2 (blue line).

Figure S10Calculated FT-IR spectra of complexes 1 (green line) and 2 (black line).

Figure S11 Three-dimensional visualizations of the coordination centers in 1.

Figure S12Three-dimensional visualizations of the coordination centers in 2.

Figure S13Three-dimensional visualizations of the coordination centers in 1.

Figure S14 Three-dimensional visualizations of the coordination centers in 2.

Figure S15 UV-vis absorption spectra of 1 and 2.

Figure S16 Emission spectra of **1** and **2** recorded at the wavelength corresponding to the maximum absorption of these systems.