

Volume 79 (2023)

Supporting information for article:

Clarifying the structures of imidines: using crystallographic characterization to identify tautomers and localized systems of π -bonding

Michael M. Aristov, Han Geng, James W. Harris and John F. Berry

Table of Contents:

IR Data 2-5

MS Data 6-9

NMR Data 10-15

Computational Data 16

Supplemental Crystallographic Images 17-25

Reference 25

864 807 756 671 638

뚝

3381-

0.9

Mass Spec Data:

1

ESI (m/z): $([C_8H_{10}N_4O](H_2O)+H]^+)$ 197.1032

ESI (*m*/*z*): ([HNNO5+Na]⁺) 121.0372

Exactiv	re Plus Ort	oitrap					CI	IC INI	113	1000	0200	22-1		Che	mica	IIns	trume	entati	on Ce	enter	, Univers	sity of \	VISCO	nsin	mauise
0.02	0.07 0.10	0.17	0.18	0.23	0.26 0	29	0.33	0.34	0.39	0.44	0.47	0.52	0.54	0.58 (0.63 0	0.65	0.67	0.73	0.77	0.79	0.85	0.87	0.93	0.96	0.99 1.41E TIC M
.0	0.1		0.	2		0.3			0.4		Ti	0.5 me (min)		0.6			0.7	,		0.8	5	0.9)		1.0
#68-84 I FTMS + p 100 90 80 70 60 50 40	RT: 0.20-0.24 p ESI Full ms 112	AV: 4 1 [50.0000- 0868	NL: 9.8	4E9 00]				A	ristov 1	372 in	10 mM	NH4OA	c/MeO	4											
30 20 10 0 54	95.0576 .0339	130.097	4	206.	223.16 1399 2	33 41.17	768	296	2006	336.21	40 36	9.2616	426	4940 45	2.075	2	520.71	150 55	5.8666	3	610.5893	67	1.9850	2	744.5
30 20 10 50	95.0576 .0339 100	130.097	4	206.	223.16 1399 2 0	33 41.17 25	768	296	2006 300	336.21	40 36	9.2616 41	426 00 n/z	4940 45	2.075	5	520.71 00	150 55	5.8668 50	3	610.5893 600	67 650	1.9850	700	744.5
30 20 10 54 50 668-85 F TMS + p	95.0576 .0339 100 RT: 0.20-0.24 e ESI Full ms	130.0974 1 AV: 4 M 50.0000-7	4 50 VL: 9.8 750.001	206. 20 4E9 10]	223.16 1399 2 0	33 41.17 25	768	296	2006	336.21	40 36	9.2616 4 1	426. 00 n/z 2.0868	4940 45 450	2.075	5	520.71 00	150 51	5.8666 50	3	610.5893 600	67 650	1.9850	700	744.5

ESI (m/z): $([C_{10}H_{15}N_5]+NH_4]^+)$ 223.17

`N $\mathbb{NH}_{2+\mathbf{NH}_{4}}$ N Н١

0.04 0.04 0.0 #89-100 RT: FTMS + p ESI 100 90 80 70 0	6 0.09 0.1 0.26-0.28 Full ms [5 1	0.14 0.16 3 AV: 3 NL: 50.000-750. 130.0975	0.24 0.25 0 0.2 0.2 2.40E9 0000]	0.3	0.36 0.40	0.42 0.47 0.50 0.5 Time (mir	0.56 0.1	9 0.64 Yohoo	0.68 0.72 0.7	0.76 0.75 0.	9 0.85	0.88 0.93 0.9	1.0 97 TIC Mo-
0.0 #89-100 RT: FTMS + p ESI 100 90 80 70 0	0.1 0.26-0.28 Full ms [5 1	3 AV: 3 NL: 50.0000-750. 130.0975	0.2 : 2.40E9 0000]	0.3	0.4	0.5 Time (mir	.)	0.6	0.7	0.	8	0.9	1.0
#89-100 RT: FTMS + p ESI 100 90 80 70	0.26-0.28 Fuli ms [5 1	3 AV: 3 NL: 50.0000-750. 130.0975	: 2.40E9 0000]										
0													
				JWH-006-02	in 10 mM N	H4OAc/CH3OH							
86.0599	114.0549	153.0634	373 207.1239	260.1713	306.1032	359.1799	436.1767	466.2881	506 4983	554.9735	587.6620	643,7996	711.0395

ESI (*m*/*z*): ([HONO6]+NH4]⁺) 131.0814

NMR Data:

3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 f1 (ppm)

3: ¹H NMR (400 MHz, **3** DMSO) δ 8.30 (s, 1H), 8.07 (s, 1H), 2.67 – 2.56 (m, 2H), 2.34 – 2.25 (m, 2H).

3: ¹³C NMR (101 MHz, **3** in DMSO) δ 193.51, 31.33, 30.72, 28.08.

2: ¹H NMR (400 MHz, **2** in DMSO) δ 7.05 (s, 3H), 2.20 (t, *J* = 6.5 Hz, 4H), 1.80 – 1.57 (q, 2H).

4: ¹H NMR (400 MHz, 4 DMSO- d_6) δ , 7.35 (s, 1H), 6.80 (s, 1H), 2.24 (t, J = 7.7 Hz, 2H), 1.88 (t, J = 7.3 Hz, 2H), 1.78 (p, J = 7.4 Hz, 2H). The remaining peaks are either unreacted starting material, **3**, or glutarimide.

Calculations:

Table S1. XYZ coordinates from the
optimized asymmetric structure of 1 .

Х	Y	Z
0.649857	1.277596	-0.00554
-0.87957	1.208895	0.007742
-1.165	-0.29754	-0.00051
0.036009	-1.01282	-0.00076
1.005749	-0.19268	0.001706
2.298247	-0.57871	0.049523
2.487487	-1.54654	-0.09035
3.013518	0.059235	-0.21267
-2.28135	-0.86433	-0.00814
-3.02497	-0.18848	-0.00903
-1.30665	1.666701	0.89213
-1.32716	1.683164	-0.85749
1.050836	1.764418	-0.88898
1.070304	1.774916	0.861671
	X 0.649857 -0.87957 0.036009 1.005749 2.298247 2.487487 3.013518 -2.28135 -3.02497 -1.30665 -1.32716 1.050836 1.070304	XY0.6498571.277596-0.879571.208895-1.165-0.297540.036009-1.012821.005749-0.192682.298247-0.578712.487487-1.546543.0135180.059235-2.28135-0.86433-3.02497-0.18848-1.306651.666701-1.327161.6831641.0508361.7644181.0703041.774916

Table S2. XYZ coordinates from the optimized symmetric structure of **1**.

•	•		
Atom	Х	Y	Z
С	0.738432	1.272389	0.093736
С	-0.78701	1.239713	-0.0961
С	-1.1574	-0.23124	-0.00404
Ν	0.025415	-0.93835	0.000991
С	1.175065	-0.17634	0.005833
Ν	2.371288	-0.54612	-0.03507
Н	2.465645	-1.54601	-0.07787
Н	0.017593	-1.93459	0.010076
Ν	-2.27434	-0.79566	0.041777
Н	-3.02215	-0.12755	0.023393
Н	-1.32447	1.814511	0.647444
Н	-1.08008	1.609986	-1.07252
Н	1.255905	1.862327	-0.64936
Н	1.016463	1.655097	1.068347

Figure S1. A molecular drawing of the structure of **1**•HCl shown with 50% probability ellipsoids.

Figure S2. A molecular drawing of **1**•HCl shown with 50% probability ellipsoids, with emphasis placed on the layered hydrogen bonding system. [Symmetry code: i: 1/2+X,-1/2+Y,+Z; ii: 1/2+X,1/2+Y,+Z; ii: -1/2+X,1/2+Y,+Z; ii: -1/2+X,1/2+X,1/2+Y,+Z; ii: -1/2+X,1/2+

Figure S3. A molecular drawing of **1** shown with 50% probability ellipsoids.

Figure S4. A molecular drawing of **3** shown with 50% probability ellipsoids.

Figure S5. A molecular drawing of **3** shown with 50% probability ellipsoids with emphasis placed on the hydrogen bonding interactions. All H atoms not participating in hydrogen bonding interactions are omitted. [Symmetry code: i = -1/2+X, 1/2-Y, -1/2+Z; ii = 3/2-X, -1/2+Y, 3/2-Z; iii = 1/2+X, 1/2-Y, 1/2+Z.]

Figure S6. A molecular drawing of **4** shown with 50% probability ellipsoids.

Figure S7. A molecular drawing of **4** shown with 50% probability ellipsoids. Emphasis is placed on the hydrogen bonding system. [Symmetry codes: i=-X,1-Y,1-Z; ii=-X,2-Y,1-Z; iii=+X,1+Y,+Z; iv=-X,-Y,1-Z; v=+X,-1+Y,+Z.]

Figure S8. A molecular drawing of the major component of 2 shown with 50% probability ellipsoids.

Figure S9. A molecular drawing of **2** shown with 50% probability ellipsoids. All Hydrogen atoms were omitted for clarity. Emphasis was placed on the disordered portion of the ring.