Download citation
Download citation
link to html
The phase behaviour of 4-[trans-4-(trans-4-propyl­cyclo­hex­yl)cyclo­hex­yl]benzo­nitrile, C22H31N, 1, has been examined. This com­pound has two different solid phases, denoted I and II, and exhibits thermotropic liquid-crystalline behaviour, with a remarkable inter­val of stability of the mesophase between the lower melting solid phase (75 °C) and the isotropization tem­per­ature (247 °C). The crystal and mol­ecular structures of solid phase I have been determined at 173 K. The cyclo­hexyl rings both adopt the chair conformation and are equatorially substituted. The packing of 1 in the crystalline state is driven by the anti­parallel arrangement of cyano dipoles with the formation of close contacts involving the strong cyano acceptor and weak aromatic C—H or aliphatic C—H donors. The crystal packing is discussed and com­pared with X-ray dif­frac­tion data in the liquid-crystalline state. The combination of thermal analysis, optical polarizing microscopy and X-ray dif­frac­tion analysis suggests that the mesophase is a partially ordered smectic phase. The lamellar structure of the mesophase is retained in crystalline solid phase II obtained by cooling the liquid-crystalline phase.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622010105/yp3226sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622010105/yp3226Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622010105/yp3226sup3.pdf
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622010105/yp3226Isup4.cml
Supplementary material

CCDC reference: 1857108

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-[trans-4-(trans-4-Propylcyclohexyl)cyclohexyl]benzonitrile top
Crystal data top
C22H31NZ = 2
Mr = 309.48F(000) = 340
Triclinic, P1Dx = 1.132 Mg m3
a = 9.6230 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1300 (18) ÅCell parameters from 93 reflections
c = 10.1510 (18) Åθ = 3.5–23.0°
α = 104.686 (12)°µ = 0.06 mm1
β = 103.935 (14)°T = 173 K
γ = 98.024 (15)°Prism, colourless
V = 907.6 (3) Å30.40 × 0.40 × 0.30 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4117 independent reflections
Radiation source: normal-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.5°
CCD rotation images, thick slices scansh = 1012
Absorption correction: multi-scan
(SADABS; Bruker–Nonius, 2002)
k = 1313
Tmin = 0.965, Tmax = 0.971l = 1312
12255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.1945P]
where P = (Fo2 + 2Fc2)/3
4117 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data for single-crystal structure determination were measured on a Bruker–Nonius Kappa CCD diffractometer equipped with Oxford (Oxford, United Kingdom) Cryostream 700 apparatus, using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). For data collection, a single crystal of approximate size 0.4 × 0.4 × 0.3 mm was attached to the tip of a glass fiber with epoxy glue, and data collection was performed at 173 (2) K. Reduction of data and semi-empirical absorption correction were done using the SADABS program (Bruker–Nonius, 2002). The structure was solved by direct methods SIR97 program (Altomare et al., 1999) and refined by the full-matrix least-squares method on F2 using the SHELXL2015 program (Sheldrick, 2015) with the aid of the program WinGX (Farrugia, 2012). The analysis of the crystal packing was performed using the program Mercury (Macrae et al., 2020).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84162 (15)0.01984 (16)0.39658 (15)0.0397 (3)
H1A0.8887230.0252970.3284270.060*
H1B0.9169260.0786910.4190400.060*
H1C0.7805080.0517470.4838220.060*
C20.74624 (14)0.10988 (13)0.33195 (14)0.0317 (3)
H2A0.8085020.1823820.2442140.038*
H2B0.7015660.1577760.3998390.038*
C30.62548 (13)0.02422 (12)0.29644 (13)0.0280 (3)
H3A0.6714430.0165650.2223590.034*
H3B0.5705980.0541340.3823980.034*
C40.51666 (12)0.10492 (11)0.24414 (12)0.0230 (2)
H40.4749270.1500230.3172190.028*
C50.39027 (13)0.00589 (12)0.22930 (12)0.0259 (3)
H5A0.4303840.0447020.1622720.031*
H5B0.3401180.0641080.3228770.031*
C60.27836 (12)0.08118 (12)0.17608 (12)0.0253 (2)
H6A0.2028600.0124720.1632070.030*
H6B0.2289680.1216020.2490010.030*
C70.34774 (12)0.19771 (12)0.03552 (11)0.0226 (2)
H70.3896430.1533530.0381920.027*
C80.47497 (13)0.29588 (12)0.05101 (13)0.0283 (3)
H8A0.4353370.3459420.1187550.034*
H8B0.5252480.3663840.0422220.034*
C90.58641 (13)0.21933 (13)0.10332 (13)0.0287 (3)
H9A0.6635490.2874260.1148150.034*
H9B0.6337360.1774360.0308100.034*
C100.23605 (12)0.27698 (11)0.01610 (11)0.0223 (2)
H100.2021360.3301480.0517580.027*
C110.10115 (13)0.17884 (13)0.01877 (13)0.0283 (3)
H11A0.0504460.1171910.0789760.034*
H11B0.1334330.1189550.0784650.034*
C120.00672 (12)0.25675 (13)0.07645 (12)0.0283 (3)
H12A0.0891740.1882930.0794340.034*
H12B0.0471500.3090110.0112950.034*
C130.06575 (12)0.35873 (12)0.22571 (11)0.0233 (2)
H130.1046320.3030590.2891620.028*
C140.19631 (13)0.45952 (12)0.22088 (13)0.0278 (3)
H14A0.2466010.5232310.3177950.033*
H14B0.1610540.5168820.1593350.033*
C150.30514 (12)0.38222 (13)0.16392 (12)0.0281 (3)
H15A0.3473240.3324230.2309290.034*
H15B0.3863520.4513330.1598350.034*
C160.04613 (12)0.42781 (12)0.28390 (11)0.0228 (2)
C170.16062 (14)0.34635 (13)0.30854 (14)0.0312 (3)
H170.1653070.2488680.2904500.037*
C180.26768 (14)0.40267 (13)0.35845 (14)0.0309 (3)
H180.3451000.3445600.3734600.037*
C190.26044 (12)0.54539 (12)0.38634 (11)0.0243 (2)
C200.14628 (14)0.62888 (13)0.36475 (14)0.0327 (3)
H200.1404520.7266700.3849180.039*
C210.04058 (14)0.57022 (13)0.31384 (14)0.0318 (3)
H210.0369730.6285020.2991960.038*
C220.37016 (13)0.60842 (12)0.43798 (12)0.0265 (3)
N10.45588 (12)0.66094 (11)0.47855 (12)0.0343 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0299 (7)0.0473 (8)0.0382 (7)0.0073 (6)0.0174 (6)0.0005 (6)
C20.0287 (6)0.0330 (6)0.0330 (6)0.0047 (5)0.0166 (5)0.0031 (5)
C30.0289 (6)0.0265 (6)0.0324 (6)0.0097 (5)0.0147 (5)0.0078 (5)
C40.0233 (5)0.0233 (5)0.0249 (5)0.0065 (4)0.0105 (4)0.0075 (4)
C50.0268 (6)0.0217 (5)0.0303 (6)0.0050 (5)0.0129 (5)0.0055 (4)
C60.0225 (5)0.0232 (5)0.0285 (6)0.0032 (4)0.0102 (4)0.0032 (4)
C70.0204 (5)0.0257 (6)0.0226 (5)0.0062 (4)0.0077 (4)0.0067 (4)
C80.0241 (6)0.0258 (6)0.0311 (6)0.0015 (5)0.0124 (5)0.0004 (5)
C90.0213 (6)0.0323 (6)0.0305 (6)0.0038 (5)0.0115 (5)0.0033 (5)
C100.0195 (5)0.0259 (6)0.0214 (5)0.0057 (4)0.0068 (4)0.0053 (4)
C110.0212 (6)0.0290 (6)0.0293 (6)0.0021 (5)0.0095 (5)0.0014 (5)
C120.0193 (5)0.0313 (6)0.0285 (6)0.0027 (5)0.0075 (4)0.0002 (5)
C130.0211 (5)0.0259 (5)0.0230 (5)0.0055 (4)0.0084 (4)0.0056 (4)
C140.0240 (6)0.0273 (6)0.0283 (6)0.0013 (5)0.0116 (5)0.0001 (5)
C150.0201 (5)0.0320 (6)0.0266 (6)0.0019 (5)0.0086 (4)0.0004 (5)
C160.0218 (5)0.0260 (6)0.0205 (5)0.0054 (4)0.0073 (4)0.0056 (4)
C170.0328 (6)0.0224 (6)0.0417 (7)0.0059 (5)0.0203 (5)0.0064 (5)
C180.0294 (6)0.0267 (6)0.0388 (7)0.0036 (5)0.0188 (5)0.0064 (5)
C190.0237 (5)0.0284 (6)0.0217 (5)0.0085 (5)0.0077 (4)0.0066 (4)
C200.0357 (7)0.0255 (6)0.0445 (7)0.0112 (5)0.0205 (6)0.0126 (5)
C210.0313 (6)0.0272 (6)0.0431 (7)0.0061 (5)0.0202 (5)0.0124 (5)
C220.0273 (6)0.0254 (6)0.0270 (6)0.0053 (5)0.0093 (5)0.0071 (4)
N10.0351 (6)0.0303 (5)0.0418 (6)0.0110 (5)0.0190 (5)0.0089 (5)
Geometric parameters (Å, º) top
C1—C21.5249 (16)C10—C111.5312 (16)
C1—H1A0.9800C10—H101.0000
C1—H1B0.9800C11—C121.5265 (15)
C1—H1C0.9800C11—H11A0.9900
C2—C31.5206 (16)C11—H11B0.9900
C2—H2A0.9900C12—C131.5315 (16)
C2—H2B0.9900C12—H12A0.9900
C3—C41.5276 (14)C12—H12B0.9900
C3—H3A0.9900C13—C161.5182 (14)
C3—H3B0.9900C13—C141.5232 (16)
C4—C91.5224 (16)C13—H131.0000
C4—C51.5272 (15)C14—C151.5282 (14)
C4—H41.0000C14—H14A0.9900
C5—C61.5277 (14)C14—H14B0.9900
C5—H5A0.9900C15—H15A0.9900
C5—H5B0.9900C15—H15B0.9900
C6—C71.5304 (16)C16—C211.3873 (16)
C6—H6A0.9900C16—C171.3932 (16)
C6—H6B0.9900C17—C181.3829 (15)
C7—C81.5313 (15)C17—H170.9500
C7—C101.5405 (14)C18—C191.3893 (16)
C7—H71.0000C18—H180.9500
C8—C91.5268 (15)C19—C201.3860 (17)
C8—H8A0.9900C19—C221.4430 (15)
C8—H8B0.9900C20—C211.3860 (16)
C9—H9A0.9900C20—H200.9500
C9—H9B0.9900C21—H210.9500
C10—C151.5300 (15)C22—N11.1438 (15)
C2—C1—H1A109.5C15—C10—C7111.68 (9)
C2—C1—H1B109.5C11—C10—C7112.56 (9)
H1A—C1—H1B109.5C15—C10—H10107.8
C2—C1—H1C109.5C11—C10—H10107.8
H1A—C1—H1C109.5C7—C10—H10107.8
H1B—C1—H1C109.5C12—C11—C10112.91 (10)
C3—C2—C1112.11 (11)C12—C11—H11A109.0
C3—C2—H2A109.2C10—C11—H11A109.0
C1—C2—H2A109.2C12—C11—H11B109.0
C3—C2—H2B109.2C10—C11—H11B109.0
C1—C2—H2B109.2H11A—C11—H11B107.8
H2A—C2—H2B107.9C11—C12—C13111.99 (9)
C2—C3—C4115.12 (10)C11—C12—H12A109.2
C2—C3—H3A108.5C13—C12—H12A109.2
C4—C3—H3A108.5C11—C12—H12B109.2
C2—C3—H3B108.5C13—C12—H12B109.2
C4—C3—H3B108.5H12A—C12—H12B107.9
H3A—C3—H3B107.5C16—C13—C14114.86 (9)
C9—C4—C5109.06 (9)C16—C13—C12110.77 (9)
C9—C4—C3113.27 (9)C14—C13—C12108.66 (9)
C5—C4—C3110.65 (9)C16—C13—H13107.4
C9—C4—H4107.9C14—C13—H13107.4
C5—C4—H4107.9C12—C13—H13107.4
C3—C4—H4107.9C13—C14—C15111.68 (9)
C4—C5—C6112.96 (9)C13—C14—H14A109.3
C4—C5—H5A109.0C15—C14—H14A109.3
C6—C5—H5A109.0C13—C14—H14B109.3
C4—C5—H5B109.0C15—C14—H14B109.3
C6—C5—H5B109.0H14A—C14—H14B107.9
H5A—C5—H5B107.8C14—C15—C10113.20 (9)
C5—C6—C7112.75 (9)C14—C15—H15A108.9
C5—C6—H6A109.0C10—C15—H15A108.9
C7—C6—H6A109.0C14—C15—H15B108.9
C5—C6—H6B109.0C10—C15—H15B108.9
C7—C6—H6B109.0H15A—C15—H15B107.8
H6A—C6—H6B107.8C21—C16—C17117.61 (10)
C6—C7—C8109.04 (9)C21—C16—C13122.91 (10)
C6—C7—C10112.92 (9)C17—C16—C13119.48 (10)
C8—C7—C10111.98 (9)C18—C17—C16122.19 (11)
C6—C7—H7107.6C18—C17—H17118.9
C8—C7—H7107.6C16—C17—H17118.9
C10—C7—H7107.6C17—C18—C19119.09 (11)
C9—C8—C7112.88 (9)C17—C18—H18120.5
C9—C8—H8A109.0C19—C18—H18120.5
C7—C8—H8A109.0C20—C19—C18119.76 (10)
C9—C8—H8B109.0C20—C19—C22119.32 (10)
C7—C8—H8B109.0C18—C19—C22120.92 (10)
H8A—C8—H8B107.8C19—C20—C21120.24 (11)
C4—C9—C8112.38 (9)C19—C20—H20119.9
C4—C9—H9A109.1C21—C20—H20119.9
C8—C9—H9A109.1C20—C21—C16121.10 (11)
C4—C9—H9B109.1C20—C21—H21119.4
C8—C9—H9B109.1C16—C21—H21119.4
H9A—C9—H9B107.9N1—C22—C19178.58 (12)
C15—C10—C11108.96 (9)
C1—C2—C3—C4174.55 (10)C11—C12—C13—C1456.51 (12)
C2—C3—C4—C964.17 (13)C16—C13—C14—C15178.88 (9)
C2—C3—C4—C5173.01 (10)C12—C13—C14—C1556.44 (12)
C9—C4—C5—C654.31 (12)C13—C14—C15—C1056.92 (13)
C3—C4—C5—C6179.55 (9)C11—C10—C15—C1453.11 (13)
C4—C5—C6—C755.35 (13)C7—C10—C15—C14178.08 (9)
C5—C6—C7—C853.02 (12)C14—C13—C16—C217.75 (16)
C5—C6—C7—C10178.17 (9)C12—C13—C16—C21115.82 (13)
C6—C7—C8—C953.81 (13)C14—C13—C16—C17172.51 (10)
C10—C7—C8—C9179.50 (9)C12—C13—C16—C1763.92 (14)
C5—C4—C9—C854.70 (12)C21—C16—C17—C181.20 (18)
C3—C4—C9—C8178.40 (9)C13—C16—C17—C18178.55 (11)
C7—C8—C9—C456.60 (13)C16—C17—C18—C190.62 (19)
C6—C7—C10—C15174.04 (9)C17—C18—C19—C200.41 (18)
C8—C7—C10—C1562.42 (12)C17—C18—C19—C22179.75 (11)
C6—C7—C10—C1151.10 (12)C18—C19—C20—C210.80 (19)
C8—C7—C10—C11174.64 (9)C22—C19—C20—C21179.35 (11)
C15—C10—C11—C1252.83 (12)C19—C20—C21—C160.2 (2)
C7—C10—C11—C12177.27 (9)C17—C16—C21—C200.79 (18)
C10—C11—C12—C1356.52 (13)C13—C16—C21—C20178.96 (11)
C11—C12—C13—C16176.44 (9)
Phase behaviour of 1 as reported in the literature (Cr is the crystal phase, Sm is the smectic phase, N is the nematic phase and I is the isotropic liquid phase) top
ReferencePhase transition temperatures (°C)
Kojima et al. (1983)Cr 73.6 Sm 81.1 N 238.9 I
Poetsch et al. (1987)Cr 55 N 184 I
Sasnovski et al. (1997)Cr 80 N 247 I
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds