

Volume 78 (2022)

Supporting information for article:

Synthesis and properties of a novel decacyclic S, N-heteroacene

Gongchun Li, Wei Wang, Chun Zhan and Shengqiang Xiao

Figure S1 ¹H NMR of compound 1.

Figure S3 MALDI-TOF mass spectrometry of compound 1.

Figure S5 ¹³C NMR of compound **3**.

Figure S7 ¹H NMR of compound 4.

Figure S9 ¹³C NMR of TIP.

Figure S10 MALDI-TOF mass spectrometry of TIP.

Table S1Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters(Å² $\times 10^3$) for **TIP**. U(eq) is defined as 1/3 of the trace of the orthogonalised U^{ij} tensor.

Atom	x	у	Z	U(eq)
S1	212.4(2)	-5584.0(2)	2834.3(5)	35.72(11)
S2	-2527.1(2)	-2886.1(2)	-1281.9(4)	31.41(11)
S3	-5495.9(2)	-2928.4(2)	5462.3(5)	29.91(10)
N1	-1040.0(5)	-5289.3(6)	4767.5(15)	25.6(3)
N2	-2034.1(5)	-4357.7(6)	4077.9(14)	22.5(3)
N3	-2103.4(5)	-3318.7(7)	-471.3(15)	28.3(3)
N4	-2971.7(5)	-2882.3(6)	-69.0(15)	27.9(3)
N5	-3175.9(5)	-3882.1(6)	4509.1(14)	21.1(3)
N6	-4206.9(5)	-3646.9(6)	6327.0(14)	24.2(3)
C1	198.6(7)	-6026.8(9)	4410(2)	37.8(4)
C2	-233.2(7)	-5963.5(9)	5182(2)	34.5(4)
C3	-565.3(6)	-5537.7(8)	4471.9(19)	28.2(3)

C4	-384.3(6)	-5297.0(8)	3202.0(19)	29.3(3)
C5	-753.2(6)	-4880.6(8)	2615.9(18)	27.2(3)
C6	-768.5(6)	-4533.9(9)	1322.1(19)	31.3(4)
C7	-1188.5(6)	-4187.8(8)	985.5(18)	29.3(3)
C8	-1591.2(6)	-4166.1(8)	1985.7(17)	24.6(3)
C9	-2067.7(6)	-3852.4(7)	1903.9(16)	23.3(3)
C10	-2329.8(5)	-3981.1(7)	3172.2(16)	21.7(3)
C11	-1580.2(6)	-4486.7(7)	3326.1(16)	22.9(3)
C12	-1161.2(6)	-4879.3(7)	3632.3(17)	24.2(3)
C13	-2298.9(6)	-3477.4(7)	807.2(16)	23.2(3)
C14	-2798.9(6)	-3227.7(7)	1037.2(16)	23.1(3)
C15	-3065.8(6)	-3385.0(7)	2325.3(16)	22.2(3)
C16	-2835.3(5)	-3760.7(7)	3369.1(16)	21.4(3)
C17	-3620.7(5)	-3543.7(7)	4151.0(16)	21.2(3)
C18	-3574.3(6)	-3257.4(7)	2793.9(16)	21.9(3)
C19	-3985.8(6)	-2961.6(7)	2101.0(17)	24.7(3)
C20	-4445.4(6)	-2949.3(7)	2793.8(17)	25.3(3)
C21	-4485.8(6)	-3184.5(7)	4211.6(17)	23.2(3)
C22	-4071.9(6)	-3473.3(7)	4929.6(16)	22.0(3)
C23	-4886.7(6)	-3197.5(7)	5247.1(17)	24.8(3)
C24	-4708.1(6)	-3464.9(7)	6507.5(17)	24.8(3)

C25	-5060.1(6)	-3454.5(8)	7666.3(19)	29.6(3)
C26	-5500.1(6)	-3178.6(8)	7238.9(19)	31.4(4)
C27	-1363.8(6)	-5560.7(8)	5879.8(18)	28.7(3)
C28	-1770.7(6)	-6001.1(8)	5282.8(19)	31.7(4)
C29	-1554.8(7)	-6628.7(9)	4773(2)	36.4(4)
C30	-1920.0(8)	-7039.9(9)	3913(2)	38.9(4)
C31	-2359.8(7)	-7325.8(9)	4754(2)	34.7(4)
C32	-2704.6(7)	-7715.4(9)	3783(2)	37.3(4)
C33	-3163.8(7)	-8011.9(9)	4507(2)	36.0(4)
C34	-3502.7(7)	-8354.3(9)	3431(2)	38.8(4)
C35	-3961.6(7)	-8682.3(8)	4073(2)	35.0(4)
C36	-4302.4(7)	-8981.0(9)	2939(2)	38.1(4)
C37	-4768.5(8)	- 9309.4(10)	3540(2)	42.9(4)
C38	-5070.8(8)	- 9665.5(11)	2408(3)	53.4(6)
C39	-2068.1(6)	-4272.5(8)	5659.1(17)	25.1(3)
C40	-1631.9(6)	-3893.8(8)	6294.8(17)	27.9(3)
C41	-1617.3(7)	-3217.9(9)	5738(2)	37.0(4)
C42	-1269.0(8)	- 2791.4(10)	6615(2)	45.7(5)
C47	-3857.9(6)	-3726.8(7)	7551.3(17)	24.7(3)

C48	-3983.6(6)	-4316.1(8)	8419.9(18)	28.0(3)
C49	-3587.6(6)	-4499.5(8)	9537.4(18)	28.3(3)
C50	-3091.4(6)	-4735.0(8)	8890.0(18)	30.6(3)
C51	-2757.3(6)	-5083.3(8)	9965.1(18)	29.4(3)
C52	-2266.1(7)	-5323.7(9)	9315.1(19)	34.5(4)
C53	-1960.2(7)	-5733.0(9)	10348.1(19)	32.8(4)
C54	-1475.0(7)	-5990.5(9)	9690(2)	35.4(4)
C55	-1172.4(7)	-6404.5(9)	10719(2)	35.4(4)
C56	-672.4(7)	- 6634.9(10)	10110(2)	43.1(4)
C57	-384.6(8)	- 7066.8(10)	11124(3)	49.7(5)
C58	126.5(9)	- 7262.7(13)	10537(4)	68.4(8)
C44B	- 3508.7(14)	- 4905.7(16)	3552(4)	34.3(8)
C45B	- 3679.2(14)	- 5570.6(16)	3899(4)	36.8(6)
C46A	-3290(3)	-6186(3)	3230(11)	60.3(10)
C46B	- 3255.6(14)	- 6022.0(16)	4286(5)	60.3(10)
C44A	-3275(3)	-5011(3)	3809(6)	34.1(13)

C45A	- 3372.6(17)	-5689(2)	4387(5)	36.8(6)
C43	-3263.2(6)	-4554.5(7)	4892.8(18)	26.7(3)

Table S2Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **TIP**.

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S1	21.74(19)	37.7(2)	47.7(3)	-5.49(19)	3.93(17)	6.09(16)
S2	34.6(2)	34.4(2)	25.2(2)	7.87(16)	3.98(15)	5.67(17)
S3	19.69(18)	34.7(2)	35.4(2)	-2.88(16)	0.16(15)	5.08(15)
N1	19.4(6)	28.6(7)	28.9(7)	0.9(5)	-1.5(5)	3.8(5)
N2	18.6(6)	26.5(7)	22.5(6)	0.9(5)	0.7(5)	1.7(5)
N3	30.5(7)	29.5(7)	24.9(7)	4.0(5)	3.4(5)	1.9(6)
N4	29.7(7)	28.1(7)	26.1(7)	3.7(5)	-0.1(5)	2.2(5)
N5	17.3(6)	22.4(6)	23.7(6)	1.5(5)	0.9(5)	0.8(5)
N6	19.6(6)	28.5(7)	24.5(6)	0.7(5)	1.1(5)	2.4(5)
C1	25.9(8)	34.3(9)	53.3(11)	-2.7(8)	-4.0(8)	7.4(7)
C2	27.2(8)	32.4(9)	43.8(10)	0.0(7)	-4.7(7)	4.8(7)
C3	19.8(7)	29.0(8)	35.8(9)	-4.0(7)	-2.9(6)	2.9(6)
C4	21.3(7)	31.4(9)	35.2(9)	-4.6(7)	1.2(6)	1.6(6)
C5	21.3(7)	30.2(8)	30.3(8)	-3.8(6)	1.9(6)	2.3(6)
C6	24.0(8)	37.5(9)	32.4(8)	-1.0(7)	7.9(6)	1.4(7)
C7	26.7(8)	34.5(9)	26.7(8)	2.0(7)	4.6(6)	0.9(7)

C8	22.1(7)	27.2(8)	24.7(7)	-0.5(6)	0.8(6)	0.2(6)
C9	21.6(7)	24.6(7)	23.9(7)	-0.6(6)	0.6(6)	-1.2(6)
C10	19.8(7)	21.9(7)	23.3(7)	-0.2(6)	-1.3(5)	-0.5(6)
C11	18.6(7)	25.8(8)	24.4(7)	-2.2(6)	1.7(6)	-0.2(6)
C12	20.5(7)	26.7(8)	25.3(7)	-1.8(6)	-0.9(6)	0.8(6)
C13	23.8(7)	22.6(7)	23.1(7)	-0.5(6)	1.3(6)	-1.7(6)
C14	23.6(7)	20.7(7)	24.9(7)	0.1(6)	-1.8(6)	-0.9(6)
C15	21.2(7)	21.4(7)	24.0(7)	-0.7(6)	-0.8(5)	-0.3(6)
C16	20.2(7)	22.0(7)	22.0(7)	-1.0(6)	-0.1(5)	-1.6(6)
C17	18.3(7)	20.4(7)	24.7(7)	-2.2(6)	-1.6(5)	1.4(5)
C18	21.5(7)	19.0(7)	25.2(7)	-1.6(6)	-0.9(6)	-0.4(6)
C19	25.7(8)	22.9(7)	25.4(7)	1.7(6)	-2.1(6)	2.0(6)
C20	23.0(7)	23.4(8)	29.5(8)	0.2(6)	-4.3(6)	4.2(6)
C21	19.9(7)	21.4(7)	28.4(8)	-3.3(6)	-0.6(6)	1.6(6)
C22	21.5(7)	20.4(7)	24.2(7)	-1.7(6)	0.2(6)	0.0(6)
C23	21.6(7)	23.5(7)	29.3(8)	-3.6(6)	-0.8(6)	1.5(6)
C24	20.5(7)	24.0(8)	30.0(8)	-2.6(6)	1.6(6)	0.4(6)
C25	25.2(8)	32.4(9)	31.2(8)	-0.9(7)	4.4(6)	-1.0(6)
C26	23.2(8)	34.2(9)	36.8(9)	-3.9(7)	6.0(6)	-0.2(7)
C27	26.9(8)	31.1(9)	28.2(8)	2.1(7)	1.6(6)	5.0(7)
C28	26.8(8)	34.1(9)	34.2(9)	4.1(7)	2.1(7)	1.2(7)

C29	32.7(9)	36.7(10)	40.0(10)	-0.9(8)	3.9(7)	-0.1(7)
C30	43.2(10)	38.6(10)	34.9(9)	-2.5(8)	6.1(8)	-4.6(8)
C31	38.5(9)	33.1(9)	32.5(9)	1.6(7)	1.0(7)	0.3(7)
C32	42.4(10)	35.2(9)	34.2(9)	-0.9(7)	3.0(8)	-3.3(8)
C33	40.3(10)	32.0(9)	35.6(9)	2.4(7)	0.9(7)	-0.3(7)
C34	41.8(10)	35.0(10)	39.6(10)	0.1(8)	2.7(8)	-2.3(8)
C35	38.8(9)	29.5(9)	36.6(9)	2.8(7)	0.1(7)	3.2(7)
C36	42.4(10)	32.6(9)	39.3(10)	4.5(8)	-1.1(8)	1.1(8)
C37	37.5(10)	39.0(10)	52.1(12)	4.4(9)	-2.0(9)	2.2(8)
C38	42.9(11)	42.6(12)	74.8(16)	10.7(11)	-16.6(11)	0.3(9)
C39	21.0(7)	32.1(8)	22.4(7)	3.2(6)	1.6(6)	3.5(6)
C40	24.3(8)	34.5(9)	24.9(8)	-2.6(6)	-0.1(6)	3.8(6)
C41	38.0(10)	35.0(9)	38.1(10)	-1.5(8)	0.7(8)	0.8(8)
C42	37.1(10)	42.9(11)	57.3(13)	-12.2(9)	7.7(9)	-4.8(8)
C47	22.8(7)	25.3(8)	26.0(7)	-0.6(6)	-1.7(6)	0.5(6)
C48	26.0(8)	28.0(8)	29.9(8)	2.5(6)	-0.6(6)	-1.4(6)
C49	31.0(8)	27.7(8)	26.2(8)	2.8(6)	-0.8(6)	-0.1(6)
C50	30.8(8)	33.8(9)	27.1(8)	3.0(7)	-2.8(6)	2.8(7)
C51	29.9(8)	30.4(8)	27.9(8)	2.4(6)	-3.6(6)	0.6(7)
C52	33.3(9)	40.3(10)	30.0(8)	3.6(7)	-1.6(7)	5.7(8)
C53	32.0(9)	35.8(9)	30.6(8)	2.9(7)	-2.3(7)	3.7(7)

C54	32.7(9)	40.6(10)	33.1(9)	3.2(7)	-0.7(7)	3.8(7)
C55	33.0(9)	37.7(10)	35.5(9)	2.4(7)	-1.8(7)	3.4(7)
C56	32.2(9)	47.8(11)	49.4(11)	-0.5(9)	-1.2(8)	5.1(8)
C57	36.5(10)	42.9(11)	69.5(15)	-4.8(10)	-13.8(10)	4.8(9)
C58	39.6(12)	60.6(15)	105(2)	-18.6(15)	-14.8(13)	14.6(11)
C44B	36.9(18)	29.3(16)	36.8(16)	-0.9(12)	-16.1(15)	0.1(14)
C45B	35.9(15)	27.9(13)	46.7(16)	-2.0(12)	-1.3(11)	-4.8(13)
C46A	54.2(18)	21.9(15)	105(3)	-2.4(17)	-10(2)	4.3(13)
C46B	54.2(18)	21.9(15)	105(3)	-2.4(17)	-10(2)	4.3(13)
C44A	46(4)	31(3)	26(3)	-1(2)	10(3)	-8(3)
C45A	35.9(15)	27.9(13)	46.7(16)	-2.0(12)	-1.3(11)	-4.8(13)
C43	24.5(8)	22.3(8)	33.2(8)	4.6(6)	4.5(6)	2.1(6)

Table S3Atomic occupancy for **TIP**.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C44B	0.65	H44A	0.65	H44B	0.65
C45B	0.52	H45A	0.52	H45B	0.52
C46A	0.3	H46A	0.3	H46B	0.3
H46C	0.3	C46B	0.7	H46D	0.7
H46E	0.7	H46F	0.7	C44A	0.35
H44C	0.35	H44D	0.35	C45A	0.48
H45C	0.48	H45D	0.48		

Figure S11 The disordered hydrocarbon chains in TIP.