

Volume 78 (2022)

Supporting information for article:

Trioxazolo[23]metacyclophane: synthesis, structural analysis, and optical properties

Hao Yu, Danielle L. Gray, Toby J. Woods and Jeffrey S. Moore

Supporting Information for

Trioxazolo[2³]metacyclophane: Synthesis, Structural Analysis, and Optical Properties

Hao Yu,^a Danielle L. Gray,^b Toby J. Woods,^b and Jeffrey S. Moore^{bc*}

^aDepartment of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, United States,
^bDepartment of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, United States,
^cBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, United States

Correspondence email: jsmoore@illinois.edu

Contents:

1. ¹ H and ¹³ C NMR Spectra	S2
2. Mass Spectra	S5
3. Additional Crystallographic Data	S5
4. DSC Curve	S15
5. Hirshfeld Analysis	S16

1. ¹H and ¹³C Spectra

Figure S1. ¹H NMR spectrum of **1** (500 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum of **1** (125 MHz, 9:1 CDCl₃/MeOD).

Figure S3. ¹H NMR spectrum of 2 (500 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum of **2** (125 MHz, CDCl₃).

Figure S5. ¹H NMR spectrum of **M** (500 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum of M (125 MHz, CDCl₃).

2. Mass Spectra

Figure S7. Mass spectrum of **M**.

3. Additional Crystallographic Data

Table S1. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2 \ x \ 10^3)$ for **M**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	2552(1)	11796(2)	5566(1)	31(1)	
O(2)	5206(1)	9142(2)	9081(1)	23(1)	
O(3)	1447(1)	2283(2)	7509(1)	25(1)	
N(1)	1069(1)	10843(2)	5606(1)	20(1)	
N(2)	5951(1)	9435(2)	8022(1)	16(1)	
N(3)	2160(1)	2795(2)	8574(1)	18(1)	
C(1)	1649(1)	12051(2)	5376(1)	29(1)	
C(2)	2544(1)	10216(2)	5969(1)	20(1)	
C(3)	3476(1)	9537(2)	6197(1)	18(1)	
C(4)	4110(1)	8996(2)	5658(1)	20(1)	
		~ -			

C(5)	5009(1)	8421(2)	5848(1)	21(1)
C(6)	5292(1)	8398(2)	6572(1)	18(1)
C(7)	4672(1)	8951(2)	7119(1)	16(1)
C(8)	3766(1)	9524(2)	6926(1)	17(1)
C(9)	5005(1)	9019(2)	7880(1)	16(1)
C(10)	6012(1)	9496(2)	8728(1)	21(1)
C(11)	4559(1)	8824(2)	8528(1)	17(1)
C(12)	3613(1)	8241(2)	8742(1)	16(1)
C(13)	3152(1)	8982(2)	9342(1)	18(1)
C(14)	2285(1)	8292(2)	9554(1)	21(1)
C(15)	1876(1)	6858(2)	9186(1)	20(1)
C(16)	2334(1)	6107(2)	8586(1)	16(1)
C(17)	3193(1)	6826(2)	8363(1)	16(1)
C(18)	1992(1)	4443(2)	8228(1)	18(1)
C(19)	1824(1)	1612(2)	8121(1)	22(1)
C(20)	1564(1)	4127(2)	7579(1)	18(1)
C(21)	1191(1)	5233(2)	6984(1)	18(1)
C(22)	421(1)	4601(2)	6582(1)	22(1)
C(23)	44(1)	5636(2)	6024(1)	23(1)
C(24)	419(1)	7301(2)	5860(1)	21(1)
C(25)	1210(1)	7937(2)	6243(1)	18(1)
C(26)	1589(1)	6899(2)	6806(1)	18(1)
C(27)	1637(1)	9627(2)	5993(1)	19(1)

1.339(2)
1.389(2)
1.343(2)
1.3852(19)
1.337(2)
1.389(2)
1.291(2)
1.401(2)
1.297(2)
1.400(2)
1.299(2)
1.400(2)
0.9500
1.361(2)
1.474(2)
1.396(2)
1.399(2)
1.388(2)
0.9500
1.385(2)
0.9500
1.400(2)
0.9500
1.398(2)
1.471(2)
0.9500
1.357(2)
0.9500
1.466(2)
1.394(2)
1.398(2)
1.389(2)
0.9500
1.388(2)
0.9500

		_ 0		
Table S2.	Bond lengths	[A] and	angles	$[\circ]$ for M .

C(15)-C(16)	1.398(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.394(2)
C(16)-C(18)	1.482(2)
С(17)-Н(17)	0.9500
C(18)-C(20)	1.354(2)
C(19)-H(19)	0.9500
C(20)-C(21)	1.464(2)
C(21)-C(22)	1.395(2)
C(21)-C(26)	1.401(2)
C(22)-C(23)	1.385(2)
C(22)-H(22)	0.9500
C(23)-C(24)	1.384(3)
С(23)-Н(23)	0.9500
C(24)-C(25)	1.403(2)
C(24)-H(24)	0.9500
C(25)-C(26)	1.395(2)
C(25)-C(27)	1.471(2)
C(26)-H(26)	0.9500
	104.22(14)
C(1)-O(1)-C(2)	104.33(14)
C(10)-O(2)-C(11)	104.06(12)
C(19)-O(3)-C(20)	104.20(13)
C(1)-N(1)-C(27)	104.48(14)
C(10)-N(2)-C(9)	104.56(13)
C(19)-N(3)-C(18)	104.17(13)
N(1)-C(1)-O(1)	115.25(15)
N(1)-C(1)-H(1)	122.4
O(1)-C(1)-H(1)	122.4
C(27)-C(2)-O(1)	107.46(14)
C(27)-C(2)-C(3)	136.72(15)
O(1)-C(2)-C(3)	115.54(14)
C(8)-C(3)-C(4)	119.20(15)
C(8)-C(3)-C(2)	122.14(15)
C(4)-C(3)-C(2)	118.53(14)
C(5)-C(4)-C(3)	120.32(15)
C(5)-C(4)-H(4)	119.8

C(3)-C(4)-H(4)	119.8
C(6)-C(5)-C(4)	120.35(15)
C(6)-C(5)-H(5)	119.8
C(4)-C(5)-H(5)	119.8
C(5)-C(6)-C(7)	120.22(15)
C(5)-C(6)-H(6)	119.9
C(7)-C(6)-H(6)	119.9
C(8)-C(7)-C(6)	119.27(14)
C(8)-C(7)-C(9)	121.27(14)
C(6)-C(7)-C(9)	119.36(14)
C(3)-C(8)-C(7)	120.63(15)
C(3)-C(8)-H(8)	119.7
C(7)-C(8)-H(8)	119.7
C(11)-C(9)-N(2)	108.24(14)
C(11)-C(9)-C(7)	132.62(15)
N(2)-C(9)-C(7)	119.08(14)
N(2)-C(10)-O(2)	114.99(14)
N(2)-C(10)-H(10)	122.5
O(2)-C(10)-H(10)	122.5
C(9)-C(11)-O(2)	108.14(14)
C(9)-C(11)-C(12)	134.39(15)
O(2)-C(11)-C(12)	117.26(13)
C(17)-C(12)-C(13)	119.35(15)
C(17)-C(12)-C(11)	118.62(14)
C(13)-C(12)-C(11)	121.89(15)
C(14)-C(13)-C(12)	119.54(16)
C(14)-C(13)-H(13)	120.2
С(12)-С(13)-Н(13)	120.2
C(15)-C(14)-C(13)	121.13(15)
C(15)-C(14)-H(14)	119.4
C(13)-C(14)-H(14)	119.4
C(14)-C(15)-C(16)	119.65(15)
C(14)-C(15)-H(15)	120.2
C(16)-C(15)-H(15)	120.2
C(17)-C(16)-C(15)	119.27(15)
C(17)-C(16)-C(18)	118.39(14)
C(15)-C(16)-C(18)	121.98(14)

C(12)-C(17)-C(16)	121.02(15)
С(12)-С(17)-Н(17)	119.5
С(16)-С(17)-Н(17)	119.5
C(20)-C(18)-N(3)	108.64(14)
C(20)-C(18)-C(16)	132.68(15)
N(3)-C(18)-C(16)	118.58(13)
N(3)-C(19)-O(3)	115.20(15)
N(3)-C(19)-H(19)	122.4
O(3)-C(19)-H(19)	122.4
C(18)-C(20)-O(3)	107.79(14)
C(18)-C(20)-C(21)	135.76(16)
O(3)-C(20)-C(21)	116.41(14)
C(22)-C(21)-C(26)	119.41(15)
C(22)-C(21)-C(20)	118.82(15)
C(26)-C(21)-C(20)	121.77(15)
C(23)-C(22)-C(21)	120.00(16)
С(23)-С(22)-Н(22)	120.0
С(21)-С(22)-Н(22)	120.0
C(24)-C(23)-C(22)	120.79(16)
С(24)-С(23)-Н(23)	119.6
С(22)-С(23)-Н(23)	119.6
C(23)-C(24)-C(25)	120.02(15)
C(23)-C(24)-H(24)	120.0
C(25)-C(24)-H(24)	120.0
C(26)-C(25)-C(24)	119.20(15)
C(26)-C(25)-C(27)	123.21(15)
C(24)-C(25)-C(27)	117.46(14)
C(25)-C(26)-C(21)	120.53(15)
C(25)-C(26)-H(26)	119.7
C(21)-C(26)-H(26)	119.7
C(2)-C(27)-N(1)	108.48(15)
C(2)-C(27)-C(25)	132.57(15)
N(1)-C(27)-C(25)	118.31(14)

	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
O(1)	37(1)	24(1)	31(1)	8(1)	-13(1)	-7(1)	
O(2)	24(1)	25(1)	19(1)	1(1)	-3(1)	-1(1)	
O(3)	27(1)	20(1)	27(1)	2(1)	2(1)	-2(1)	
N(1)	28(1)	15(1)	18(1)	2(1)	-8(1)	2(1)	
N(2)	14(1)	16(1)	16(1)	3(1)	-2(1)	0(1)	
N(3)	17(1)	17(1)	19(1)	5(1)	2(1)	-1(1)	
C(1)	37(1)	20(1)	29(1)	5(1)	-18(1)	0(1)	
C(2)	29(1)	16(1)	14(1)	1(1)	-5(1)	-2(1)	
C(3)	22(1)	12(1)	18(1)	2(1)	-2(1)	-5(1)	
C(4)	31(1)	17(1)	13(1)	0(1)	-1(1)	-7(1)	
C(5)	27(1)	18(1)	19(1)	-3(1)	7(1)	-6(1)	
C(6)	19(1)	14(1)	23(1)	0(1)	3(1)	-3(1)	
C(7)	20(1)	13(1)	16(1)	1(1)	0(1)	-3(1)	
C(8)	20(1)	15(1)	15(1)	1(1)	2(1)	-2(1)	
C(9)	16(1)	13(1)	19(1)	1(1)	-2(1)	1(1)	
C(10)	18(1)	21(1)	23(1)	3(1)	-3(1)	-1(1)	
C(11)	20(1)	14(1)	17(1)	-1(1)	-4(1)	1(1)	
C(12)	19(1)	16(1)	13(1)	5(1)	-1(1)	4(1)	
C(13)	25(1)	17(1)	13(1)	2(1)	-1(1)	4(1)	
C(14)	27(1)	19(1)	15(1)	2(1)	6(1)	8(1)	
C(15)	19(1)	20(1)	19(1)	7(1)	4(1)	3(1)	
C(16)	19(1)	15(1)	15(1)	5(1)	-1(1)	3(1)	
C(17)	19(1)	17(1)	12(1)	2(1)	1(1)	4(1)	
C(18)	15(1)	19(1)	20(1)	4(1)	5(1)	1(1)	
C(19)	22(1)	18(1)	26(1)	6(1)	4(1)	1(1)	
C(20)	17(1)	17(1)	22(1)	2(1)	4(1)	-1(1)	
C(21)	19(1)	20(1)	16(1)	-1(1)	2(1)	3(1)	
C(22)	21(1)	23(1)	23(1)	0(1)	2(1)	-3(1)	
C(23)	17(1)	32(1)	21(1)	0(1)	-2(1)	-3(1)	
C(24)	17(1)	28(1)	17(1)	2(1)	0(1)	4(1)	
C(25)	18(1)	20(1)	16(1)	-2(1)	2(1)	2(1)	
C(26)	18(1)	20(1)	16(1)	-2(1)	-2(1)	1(1)	

Table S3. Anisotropic displacement parameters (Å2x 10³) for M. The anisotropicdisplacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}$]

S11

C(27)	25(1)	18(1)	13(1)	-2(1)	-4(1)	4(1)
						(

Table S4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **M**.

	Х	у	Z	U(eq)	
H(1)	1449	13049	5092	35	
H(4)	3924	9022	5160	24	
H(5)	5432	8041	5480	26	
H(6)	5910	8006	6698	22	
H(8)	3343	9908	7294	20	
H(10)	6584	9770	8976	25	
H(13)	3428	9950	9604	22	
H(14)	1968	8809	9957	25	
H(15)	1287	6390	9340	23	
H(17)	3496	6344	7946	19	
H(19)	1845	359	8218	26	
H(22)	156	3462	6691	27	
H(23)	-479	5196	5752	28	
H(24)	141	8015	5486	25	
H(26)	2122	7324	7071	22	

 Table S5.
 Torsion angles [°] for M.

C(27)-N(1)-C(1)-O(1)	-0.3(2)
C(2)-O(1)-C(1)-N(1)	0.1(2)
C(1)-O(1)-C(2)-C(27)	0.13(18)
C(1)-O(1)-C(2)-C(3)	175.03(15)
C(27)-C(2)-C(3)-C(8)	-75.4(3)
O(1)-C(2)-C(3)-C(8)	111.75(17)
C(27)-C(2)-C(3)-C(4)	108.7(2)
O(1)-C(2)-C(3)-C(4)	-64.2(2)
C(8)-C(3)-C(4)-C(5)	1.2(2)
C(2)-C(3)-C(4)-C(5)	177.23(15)
C(3)-C(4)-C(5)-C(6)	-0.8(2)
C(4)-C(5)-C(6)-C(7)	0.2(2)
C(5)-C(6)-C(7)-C(8)	0.0(2)
C(5)-C(6)-C(7)-C(9)	-176.38(15)
C(4)-C(3)-C(8)-C(7)	-1.0(2)
C(2)-C(3)-C(8)-C(7)	-176.88(15)
C(6)-C(7)-C(8)-C(3)	0.4(2)
C(9)-C(7)-C(8)-C(3)	176.72(15)
C(10)-N(2)-C(9)-C(11)	-1.09(18)
C(10)-N(2)-C(9)-C(7)	176.37(15)
C(8)-C(7)-C(9)-C(11)	32.5(3)
C(6)-C(7)-C(9)-C(11)	-151.20(18)
C(8)-C(7)-C(9)-N(2)	-144.26(15)
C(6)-C(7)-C(9)-N(2)	32.1(2)
C(9)-N(2)-C(10)-O(2)	0.76(19)
C(11)-O(2)-C(10)-N(2)	-0.14(19)
N(2)-C(9)-C(11)-O(2)	1.04(18)
C(7)-C(9)-C(11)-O(2)	-175.93(16)
N(2)-C(9)-C(11)-C(12)	-173.36(17)
C(7)-C(9)-C(11)-C(12)	9.7(3)
C(10)-O(2)-C(11)-C(9)	-0.57(17)
C(10)-O(2)-C(11)-C(12)	174.92(14)
C(9)-C(11)-C(12)-C(17)	38.7(3)
O(2)-C(11)-C(12)-C(17)	-135.32(15)
C(9)-C(11)-C(12)-C(13)	-145.62(19)

O(2)-C(11)-C(12)-C(13)	40.4(2)
C(17)-C(12)-C(13)-C(14)	0.3(2)
C(11)-C(12)-C(13)-C(14)	-175.36(15)
C(12)-C(13)-C(14)-C(15)	1.0(2)
C(13)-C(14)-C(15)-C(16)	-0.9(2)
C(14)-C(15)-C(16)-C(17)	-0.6(2)
C(14)-C(15)-C(16)-C(18)	172.37(14)
C(13)-C(12)-C(17)-C(16)	-1.8(2)
C(11)-C(12)-C(17)-C(16)	173.98(14)
C(15)-C(16)-C(17)-C(12)	2.0(2)
C(18)-C(16)-C(17)-C(12)	-171.26(14)
C(19)-N(3)-C(18)-C(20)	-0.30(17)
C(19)-N(3)-C(18)-C(16)	-177.14(14)
C(17)-C(16)-C(18)-C(20)	-78.8(2)
C(15)-C(16)-C(18)-C(20)	108.1(2)
C(17)-C(16)-C(18)-N(3)	97.09(17)
C(15)-C(16)-C(18)-N(3)	-76.0(2)
C(18)-N(3)-C(19)-O(3)	-0.11(18)
C(20)-O(3)-C(19)-N(3)	0.46(18)
N(3)-C(18)-C(20)-O(3)	0.58(17)
C(16)-C(18)-C(20)-O(3)	176.80(16)
N(3)-C(18)-C(20)-C(21)	178.11(17)
C(16)-C(18)-C(20)-C(21)	-5.7(3)
C(19)-O(3)-C(20)-C(18)	-0.62(17)
C(19)-O(3)-C(20)-C(21)	-178.70(13)
C(18)-C(20)-C(21)-C(22)	-148.82(19)
O(3)-C(20)-C(21)-C(22)	28.6(2)
C(18)-C(20)-C(21)-C(26)	31.5(3)
O(3)-C(20)-C(21)-C(26)	-151.16(15)
C(26)-C(21)-C(22)-C(23)	-1.5(2)
C(20)-C(21)-C(22)-C(23)	178.83(15)
C(21)-C(22)-C(23)-C(24)	-0.2(3)
C(22)-C(23)-C(24)-C(25)	2.1(2)
C(23)-C(24)-C(25)-C(26)	-2.2(2)
C(23)-C(24)-C(25)-C(27)	173.70(15)
C(24)-C(25)-C(26)-C(21)	0.5(2)
C(27)-C(25)-C(26)-C(21)	-175.12(15)
	S14

1.3(2)
-178.98(15)
-0.29(18)
-173.57(18)
170.06(16)
-3.2(3)
0.33(18)
-171.61(15)
30.8(3)
-144.92(18)
-159.64(15)
24.7(2)

Figure S8. Molecular packing along a, b, and c axis, respectively.

4. DSC Curve

Differential scanning calorimetry (DSC) data were obtained using a DSC TA instrument Q20.

Figure S9. DSC heating-cooling-heating curves of M (heating rate: 10 °C/min).

Figure S10. DSC heating curve of **M** (heating rate: 10 °C/min).

5. Hirshfeld Analysis

Figure S11. 2D fingerprint plots of M calculated from the Hirshfeld surface analysis using CrystalExplorer.