

Volume 77 (2021)

Supporting information for article:

Transition-metal complexes of group 12 with 1,1'-bis(phosphanyl)ferrocene ligands

Karan Chaudhary, Manoj Trivedi, Dhanraj T. Masram and Nigam P. Rath

Figure S1 Time-resolved ³¹P NMR spectra recorded directly from the reaction mixture in CDCl₃ by using phosphoric acid as an external standard; 0h (a), 1h (b), 10h (c), 15h (d), and 24h (e) of PdI₂ (0.011 g; 3.1×10^{-2} mmol) containing dppdtbpf (1.028 g, 2.0 mmol) was treated with aqueous KOH (25 wt %, 18 mL) and 1,2-dibromoethane (0.999 g, 5.32 mmol) containing KI (0.045 g, 0.27 mmol). The signals at 75.40, 36.34 corresponds to dppdtbpf; 77.85, 35.80 corresponds to Pd(κ^{1} -dppdtbpf)I₂; 32.30, 29.06 corresponds to dppOdtbpf and 28.85, -53.08 may be due to (dppdtbpfH₂)²⁺.

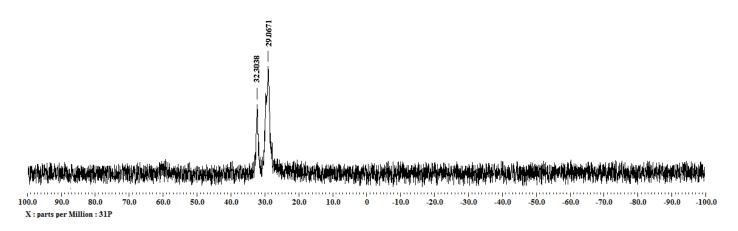


Figure S2 ³¹P NMR spectrum of L¹ in CDCl₃.

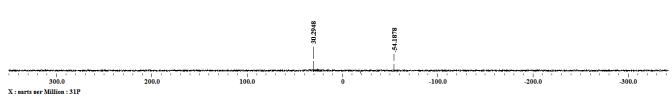
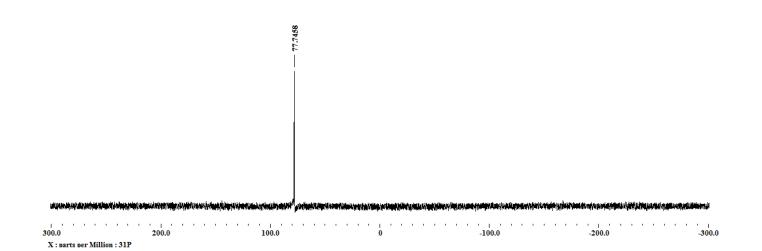
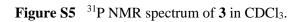




Figure S3 ³¹P NMR spectrum of 1 in CDCl₃.

Figure S4 ³¹P NMR spectrum of 2 in CDCl₃.

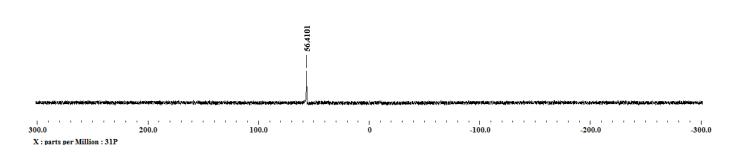


Figure S6 ³¹P NMR spectrum of 4 in CDCl₃.

Figure S7 UV-Vis spectra of all compounds in CH₂Cl₂.

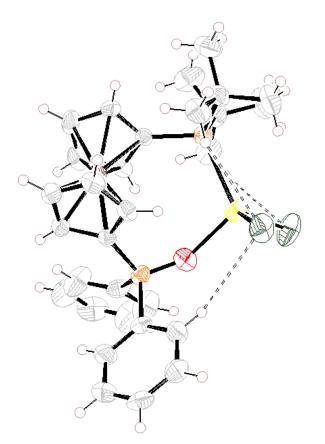


Figure S8 Ortep diagram of 1 showing C-H…Cl hydrogen bond interactions.

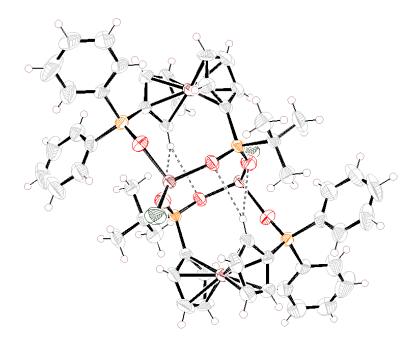


Figure S9 Ortep diagram of 2 showing C-H…O hydrogen bond interactions.

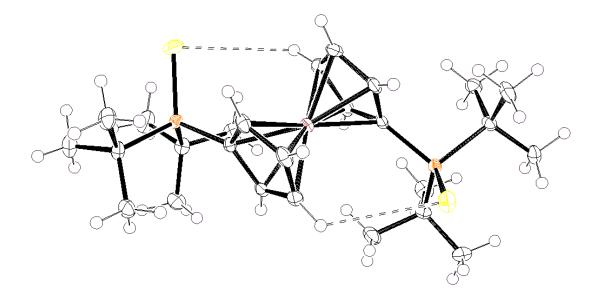
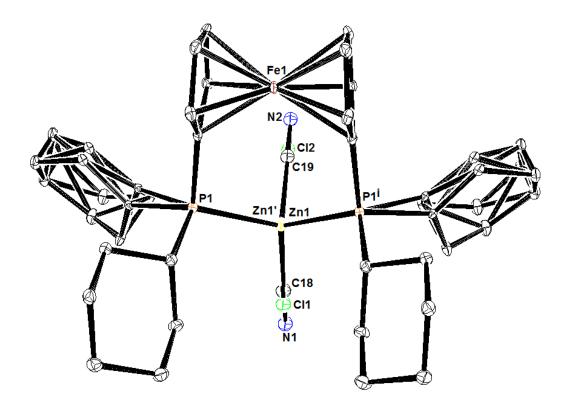
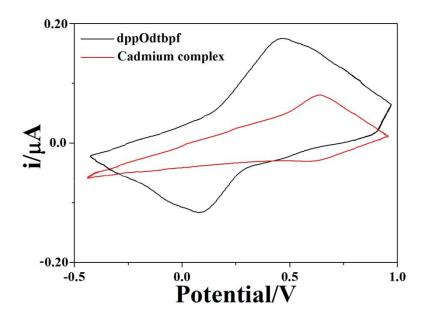
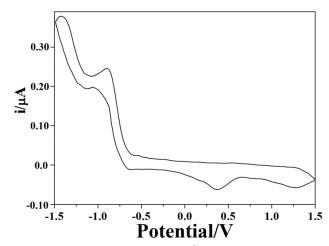


Figure S10 Ortep diagram of 3 showing C-H…S hydrogen bond interactions.


Figure S11 Thermal ellipsoid plot of compound 4 (30% probability). H atoms are omitted for clarity.

S1. Electrochemistry

The electrochemical properties of new compounds were investigated by cyclic voltammetry in CH₂Cl₂ at room temperature (RT) and the redox data are presented in Table S1. The cyclic voltammogram of dppOdtbpf was analyzed and the potential at which oxidation occurs (E^0) is 0.12 V relative to Fc^{+/0}. This is similar to the potentials at which oxidation of the closely related dppdtbpf derivatives take place (0.11 V vs. Fc^{+/0}) (Kahn *et al.*, 2009). The oxidative electrochemistry of cadmium compound **1** was also investigated. The oxidation of **1** is chemically and electrochemically quasi-reversible. The potential at which oxidation occurs is +0.54 V (Figure S12). The electrochemical oxidation of compound **2** is quasi-reversible and occurred at potentials 0.37 V and 1.27 V, respectively (Figure S13). The reversibility of these waves suggests that the oxidation of the iron centre has minimal impact on the O-Zn bonds (Hartlaub *et al.*, 2017). The electrochemistry of compound **3** has been previously described by Nataro *et al.* (Blanco *et al.*, 2006). We have found similar findings, and it shows the one chemically and electrochemically reversible and occurred at potentials 0.81 V and -0.55 V, respectively (Figure S15).

Figure S12. Cyclic voltammograms for dppOdtbpf and cadmium compound **1** in $CH_2Cl_2/0.1$ M [NBu₄]PF₆ at 100 mVs⁻¹ scan rate.

Figure S13. Cyclic voltammogram for $(ZnOCl(\kappa^2-O,O-Ph_2POFcPO_2(t-Bu))_2$ in CH₂Cl₂/0.1 M [NBu₄]PF₆ at 100 mVs⁻¹ scan rate.

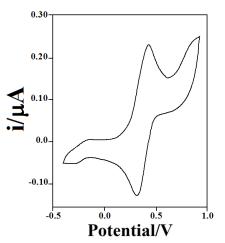
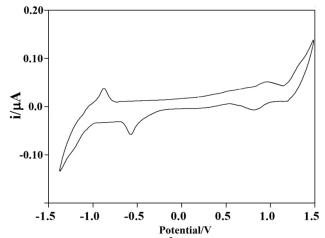



Figure S14. Cyclic voltammogram for dtbpfS₂ in CH₂Cl₂/0.1 M [NBu₄] PF₆at 100 mVs⁻¹ scan rate.

Figure S15. Cyclic voltammogram for $Zn(CN)_2(\kappa^2-dcpf)$ in $CH_2Cl_2/0.1$ M [NBu₄]PF₆ at 100 mVs⁻¹ scan rate.

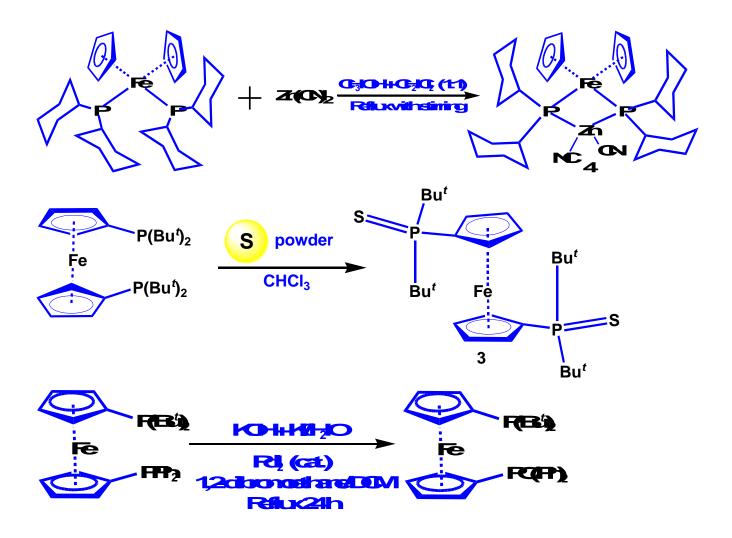

Compound	Oxidation	Reduction ^b E _{pc} /V
	^a E _{pa} /V vs. SCE	vs. SCE
dppOdtbpf	+0.12	+0.48
$[CdCl_2(\kappa^2-P,O-dppOdtbpf)](1)$	+0.54	+0.64
$[ZnOCl(\kappa^2-O,O-Ph_2POFcPO_2(t-Bu))]_2 (2)$	+0.37, 1.27	-0.89, -1.44
$dtbpfS_2(3)$	+0.36	+0.46
$[Zn(CN)_2(\kappa^2 - dcpf)] (4)$	+0.81,-0.55	-0.80, 1.12

Table S1 Electrochemical data in dichloromethane solution/0.1 M [NBu₄]PF₆ at 298 K.

 ${}^{a}E_{pa}$ is the anodic peak potential of the reversible oxidation wave; ${}^{b}E_{pc}$ is the cathodic peak potential of the reversible oxidation wave.

References

- Blanco, F. N., Hagopian, L. E., McNamara, W. R., Golen, J. A., Rheingold, A. L. & Nataro, C. (2006). Organometallics. 25, 4292-4300.
- Hartlaub, S. F., Lauricella, N. K., Ryczek, C. N., Furneaux, A. G., Melton, J. D., Piro, N. A., Kassel, W. S. & Nataro, C. (2017). *Eur. J. Inorg. Chem.*2017, 424-432.
- Kahn, S. L., Breheney, M. K., Martinak, S. L., Fosbenner, S. M., Seibert, A. R., Kassel, W. S., Dougherty, W. G. & Nataro, C. (2009). Organometallics. 28, 2119-2126.

