

Volume 76 (2020)

Supporting information for article:

Crystal structure of monoclinic hafnia (HfO2) revisited from synchrotron X-ray, neutron diffraction and first-principles

Santanu Pathak, Parnika Das, Tilak Das, Guruprasad Mandal, Boby Joseph, Manjulata Sahu, S. D. Kaushik and Vasudeva Siruguri

Supporting information, sup-1

Supporting Information

We have given here the necessary supporting data with following content:

Content: Section S1: Diffraction pattern of calibrant LaB₆ Section S2: Density functional theory

Section S1: Diffraction pattern of calibrant LaB₆

The sample to detector geometry was determined using the diffraction pattern of standard sample of Lanthanum Hexaboride (LaB₆). Integration of the 2D diffraction patterns to I-2 θ plots were carried out using this calibration. The integrated pattern of the calibrant LaB₆ is shown in **Fig. S1**.

Figure S1 Integrated I-2 θ diffraction plot of calibrant LaB₆ in Xpress beamline (λ = 0.5007 Å).

Section S2: Density Functional Theory

All calculations for electronic structure analysis are done based on the CRYSTAL17 programme, as discussed earlier. For O atoms, we opted the all electron basis-sets (Scaranto *et al.*, 2008), whereas for Hf atom empirical core potential basis sets were adopted (Muñoz-Ramo *et al.*, 2007a) due to their robustness which is validated in the previous reports (Muñoz-Ramo *et al.*, 2007b).Coulomb and exchange integrals cut-off during the self-consistent field (SCF) calculations was chosen to 10^{-8} for coulomb overlap tolerance, coulomb penetration tolerance, exchange overlap tolerance, exchange pseudo overlap in direct space and 10^{-16} for exchange pseudo overlap in reciprocal space. The SCF calculation was considered converged when

the difference in energy between two subsequent cycles is lower than 10⁻⁸ au. The k-mesh was set with a shrinking factor 8 using Pack-Monkhorst methods. During the structural relaxation (both cell volume and lattice position relaxed), the force convergence cut-off was set to 10⁻⁷. We have used the Generalized Gradient Approximation (GGA) of the exchange correlation as proposed by Perdew, Ernzerhof and Bruke, so called PBE-GGA functional (Perdew *et al.*, 1996). This latter B3LYP type functional combines the LYP exchange-correlation functional, including 20% Fock exchange i.e. so called B3LYP hybrid functional (Becke, 1993). However, in the HSE06 functional, the Fock exchange is 25%, along with the PBE-GGA exchange and correlation.

All electron full potentials calculations are done with the plane-wave WIEN2K Code (Blaha *et al.*, 2019) and the hybrid calculations (TB-mBJ) Modified Becke-Johnson (mBJ) exchange correlation potential proposed by Tran & Blaha, 2009 as implemented in the WIEN2K code. From the PBE-GGA ground state wave function using $6 \times 6 \times 6$ *k*-mesh and tetrahedron method, the TB-mBJ calculations were performed on the top. The energy and charge convergence were ensured during the self-consistent run using convergence criteria 10^{-8} au and 10^{-6} , respectively. The plane-wave cut-off of 600 eV was ensured with largest muffin-tin radius multiplied with K_{max} value yields 8.0.

Figure S2 (a) Calculated total density of states (DOS), along with the atom projected DOS from (b) Hf, (c) O1 and (d) O2 atoms from PBE-GGA (black shade area), B3LYP (red solid line) and HSE06 (green solid line) functional based calculations.

References

Becke, A. D. (1993). J. Chem. Phys. 98, 1372.
Blaha, P., Schwarz, K., Madsen, G. K. H., Kavasnicka, D., Luitz, J., Laskowski, R. & Marks, L. D. (2019). WIEN2K: An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties, ISBN: 3-9501031-1-2.
Tran, F. & Blaha, P. (2009). Phys. Rev. Lett. 102, 226401.
Muñoz-Ramo, D., Gavartin, J. L. & Shluger, A. L. (2007). Phys. Rev. B 75, 205336.
Muñoz-Ramo, D., Shluger, A. L., Gavartin, J. L. & Bersuker, G. (2007). Phys. Rev. Lett. 99, 155504.
Perdew, J. P., Ernzerhof, M. & Burke, K. (1996). J. Chem. Phys. 105, 9982-9985.
Scaranto, J. & Giorgianni, S. (2008). J. Mol. Struct.: THEOCHEM 858, 72-76.