¹H NMR of Wogonin Crystallized from Methanol: Sample 3b

(Wog $1.5H_2O$)

1H NMR Sample 3b in d6-DMSO

1H NMR (400 MHz, DMSO): δ = 12.4509 (s, 2H, 5–OH), 8.087~8.0866(d, 2H, Ar–H), 7.628~7.610 (d 2H+1H, Ar–H), 7.003 (s, 1H, CHCO), 6.304 (s, 1H, Ar–H), 3.853 (s, 3H, ArOCH₃) ppm.

Comment on 1H NMR of Wog 1.5(H2O) 3b in d6-DMSO

- To double check the result we run the sample using DMSO as what most of the previous method reported used in their analysis.
- If DMSO (δ = 2.50 ppm) is used as NMR solvent the chemical shift for the water is typically found at δ = 3.33 ppm. ¹ NMR result showed a chemical shift at δ = 3.328 indicating the presence of water.
- MeOH may be seen in the following chemical shifts , δ CH₃ = 3.16 ppm and δ OH = 4.01ppm. ¹ No peak appears in the MeOH region thus there is no MeOH in the sample.
- To confirm the peak at 3.33 is not due to MeOH we also ran the spectrum in d6-dmso, which will shift the water peak but not the CH_3 of MeOH.

1. Fulmer G. R. et al., Organometallics 2010, 29, 2176–2179

1H NMR Sample 3b in CDCl₃

1H NMR (400 MHz, $CDCl_3$): $\delta = 12.430$ (s, 1H, 5-OH),, 7.859~7.839 (d, 2H, Ar–H), 7.514~7.468 (d, 2H+1H, Ar–H), 6.622 (s, 1H, CHCO), 6.382 (s, 1H, Ar–H), 6.348 (s,1H, 7-OH), 3.975 (s, 3H, ArOCH₃) ppm.

Comment on 1H NMR of Wog 1.5(H₂O) 3b in CDCl₃

- When CDCl₃ (δ = 7.192ppm) is used as NMR solvent the chemical shift for the water is typically found at δ = 1.56ppm. NMR result showed a chemical shift at δ = 1.532 indicating the presence of water.
- MeOH may be seen in the following chemical shifts , δ CH₃ = 3.49ppm and δ OH = 1.09ppm. No peak appeared in the CH₃ region thus there is no MeOH in the sample.
- The peaks in the 1.263 ~1.183 and 0.824 ~0.763, integrate to less than 1H and may be due to an impurity such as grease.

• 1 Fulmer G. R. et al., Organometallics 2010, 29, 2176–2179