

Volume 76 (2020)

Supporting information for article:

Synthesis, crystal structure and conformational analysis of an unexpected [1,5]dithiocine product of aminopyridine and thiovanillin

Kalina Mambourg, Laurie Bodart, Nikolay Tumanov, Steve Lanners and Johan Wouters

Figure S1 ¹H-NMR spectrum of compound O- (2-formyl-6-methoxyphenyl) dimethylcarbamothioate

Figure S2 ¹H-NMR spectrum of compound S- (2-formyl-6-methoxyphenyl) dimethylcarbamothioate

Figure S3 ¹H-NMR spectrum of compound 2-mercapto-3-methoxybenzaldehyde 2b

Figure S4 ¹H-NMR spectrum of compound 4,10-dimethoxy-13-(pyridin-3-yl)-6H,12H-6,12epiminodibenzo[b,f] [1,5]dithiocin **4**

Figure S5 ¹³C-NMR spectrum of compound 4,10-dimethoxy-13-(pyridin-3-yl)-6H,12H-6,12epiminodibenzo[b,f] [1,5]dithiocin **4**

Figure S6 LC-MS spectrum of compound 4,10-dimethoxy-13-(pyridin-3-yl)-6H,12H-6,12epiminodibenzo[b,f] [1,5]dithiocin **4**

D —Н···A	<i>D</i> —Н	H···A	D ····A	D —Н…А
C28—H28…O9 ⁱ	0.98	2.41	3.222 (3)	140.3
C29—H29…S2 ⁱⁱ	0.98	2.88	3.601 (2)	131.1
C41—H41A····O2 ⁱⁱⁱ	0.96	2.51	3.367 (3)	148.1
O10—H10A…N6	0.82	2.11	2.804 (5)	143.0
O9—H9…O10	0.82	1.76	2.569 (5)	166.9

Table S1 Hydrogen-bond geometry (Å, °)

Symmetry code: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y+1, z-1

Figure S7 Hydrogen bonds in the asymmetric unit.

Figure S8 Chalcogen bonds in the structure of four.

Occupancy factor (ESD) Atom number N_2 0.521 (18) $N_{2A}*$ 0.479 (18) N_4 0.570(2) N_{4A}* 0.430(2) 0.927 (3) N_6 N_{6A}* 0.073 (3) O9 0.924 (3) 0.924 (3) $N_{10} \\$ 4a 4d4b4c

Table S2Occupancy factors of the disordered atoms. * Stands for second component of the
disorder.

Figure S9 Superposition of crystal structure (red) and the structure after geometry optimisation (blue).

Figure S10Experimental powder pattern and calculated powder pattern based on the single-crystal structure.