

Volume 75 (2019)

Supporting information for article:

The first example of stereoselective synthesis and crystal structure of spirobicycloquinazolinone based on ((ndash;)-fenchone and anthranilamide

Vladimir V. Chernyshov, Yuri V. Gatilov, Olga I. Yarovaya, Igor P. Koskin, Spartak S. Yarovoy, Konstantin A. Brylev and Nariman F. Salakhutdinov

Figure S1 IR spectrum of compound 1.

Figure S2 High-Resolution Mass Spectrum of compound 1.

Figure S3 ¹³C-NMR spectrum for compound 1 (CDCl₃, 125.76 MHz)

Figure S4 ¹H-NMR spectrum for compound 1 (CDCl₃, 400.13MHz)

Table S1(1R,2S,4S)-1,3,3-trimethyl-1'H-spiro[bicyclo[2.2.1]heptane-2,2'-quinazolin]-4'(3'H)-one (1)

Crystal data

Chemical formula	$C_{17}H_{22}N_2O$
M _r	270.36
Crystal system, space group	Orthorhombic, P2 ₁ 2 ₁ 2 ₁
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.8870 (5), 12.2535 (5), 27.7511 (11)
$V(Å^3)$	4042.2 (3)
Ζ	8
Radiation type	Μο Κα

$\mu (mm^{-1})$	0.06
Crystal size (mm)	0.60 imes 0.22 imes 0.20
Data collection	
Diffractometer	Bruker APEX-II CCD
Absorption correction	Multi-scan SADABS2008/1
T_{\min}, T_{\max}	0.801, 0.939
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32223, 7494, 5139
R _{int}	0.053
$(\sin\theta/\lambda)_{max}$ (Å ⁻¹)	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.178, 1.04
No. of reflections	7494
No. of parameters	361
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} (e \ {\rm \AA}^{-3})$	0.27, -0.16
Absolute structure	Flack x determined using 1849 quotients $[(I+)-(I-)]/[(I+)+(I-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	2.7 (5)

Computer programs: Bruker *APEX2*, Bruker *SAINT*, *SHELXS97* (Sheldrick, 2008), *SHELXL2014*/7 (Sheldrick, 2014), Bruker *SHELXTL*.

Table S2	Geometric parameters (Å, °)
----------	-----------------------------

O1—C11 1.24	44 (4) O101—	-C111 1.250 (4)
-------------	--------------	-----------------

N1—C11	1.337 (4)	N101—C111	1.327 (4)
N1—C2	1.471 (5)	N101—C102	1.469 (4)
N1—H1A	0.8600	N101—H10E	0.8600
C1—C6	1.505 (7)	C101—C108	1.489 (7)
C1—C7	1.529 (8)	C101—C106	1.546 (6)
C1—C8	1.532 (9)	C101—C102	1.556 (5)
C1—C2	1.573 (6)	C101—C107	1.557 (6)
N2—C13	1.378 (4)	N102—C113	1.383 (4)
N2—C2	1.437 (4)	N102—C102	1.447 (4)
N2—H2A	0.8600	N102—H10D	0.8600
C2—C3	1.603 (6)	C102—C103	1.603 (5)
C3—C10	1.508 (8)	C103—C109	1.543 (6)
С3—С9	1.526 (8)	C103—C104	1.546 (6)
C3—C4	1.612 (9)	C103—C110	1.563 (6)
C4—C5	1.450 (10)	C104—C105	1.520 (7)
C4—C7	1.530 (10)	C104—C107	1.538 (7)
C4—H4A	0.9800	C104—H10F	0.9800
C5—C6	1.561 (11)	C105—C106	1.497 (8)
С5—Н5А	0.9700	C105—H10Q	0.9700
С5—Н5В	0.9700	C105—H10R	0.9700
С6—Н6А	0.9700	C106—H10O	0.9700
С6—Н6В	0.9700	C106—H10P	0.9700
С7—Н7А	0.9700	C107—H10G	0.9700
С7—Н7В	0.9700	С107—Н10Н	0.9700
C8—H8A	0.9600	C108—H10I	0.9600
C8—H8B	0.9600	С108—Н10Ј	0.9600

С8—Н8С	0.9600	С108—Н10К	0.9600
С9—Н9А	0.9600	C109—H10L	0.9600
С9—Н9В	0.9600	C109—H10M	0.9600
С9—Н9С	0.9600	C109—H10N	0.9600
С10—Н10А	0.9600	С110—Н11Е	0.9600
С10—Н10В	0.9600	C110—H11F	0.9600
С10—Н10С	0.9600	C110—H11G	0.9600
C11—C12	1.477 (5)	C111—C112	1.463 (4)
C12—C17	1.380 (5)	C112—C117	1.395 (5)
C12—C13	1.391 (5)	C112—C113	1.405 (5)
C13—C14	1.422 (5)	C113—C114	1.389 (5)
C14—C15	1.365 (6)	C114—C115	1.354 (6)
C14—H14A	0.9300	C114—H11A	0.9300
C15—C16	1.387 (7)	C115—C116	1.397 (6)
С15—Н15А	0.9300	C115—H11D	0.9300
C16—C17	1.380 (6)	C116—C117	1.372 (5)
С16—Н16А	0.9300	C116—H11C	0.9300
С17—Н17А	0.9300	C117—H11B	0.9300
C11—N1—C2	126.3 (3)	C111—N101—C102	126.7 (3)
C11—N1—H1A	116.8	C111—N101—H10E	116.7
C2—N1—H1A	116.8	C102—N101—H10E	116.7
C6—C1—C7	102.7 (4)	C108—C101—C106	116.1 (4)
C6—C1—C8	114.1 (4)	C108—C101—C102	114.7 (3)
C7—C1—C8	115.3 (5)	C106—C101—C102	108.9 (3)
C6—C1—C2	110.3 (4)	C108—C101—C107	115.7 (4)
C7—C1—C2	100.1 (4)	C106—C101—C107	99.2 (3)

C8—C1—C2	113.1 (4)	C102—C101—C107	100.2 (3)
C13—N2—C2	121.7 (3)	C113—N102—C102	121.2 (3)
C13—N2—H2A	119.2	C113—N102—H10D	119.4
C2—N2—H2A	119.2	C102—N102—H10D	119.4
N2—C2—N1	106.7 (3)	N102—C102—N101	105.9 (3)
N2—C2—C1	111.4 (3)	N102—C102—C101	111.8 (3)
N1—C2—C1	109.8 (3)	N101—C102—C101	109.4 (3)
N2—C2—C3	114.7 (3)	N102—C102—C103	115.5 (3)
N1—C2—C3	111.8 (3)	N101—C102—C103	111.8 (3)
C1—C2—C3	102.5 (3)	C101—C102—C103	102.4 (3)
C10—C3—C9	107.4 (5)	C109—C103—C104	113.2 (4)
C10—C3—C2	111.2 (4)	C109—C103—C110	107.3 (4)
C9—C3—C2	112.5 (4)	C104—C103—C110	108.2 (4)
C10—C3—C4	116.5 (5)	C109—C103—C102	113.2 (3)
C9—C3—C4	109.2 (5)	C104—C103—C102	102.7 (3)
C2—C3—C4	100.0 (4)	C110—C103—C102	112.2 (3)
C5—C4—C7	102.8 (7)	C105—C104—C103	110.3 (4)
C5—C4—C3	108.4 (6)	C105—C104—C107	100.1 (4)
C7—C4—C3	102.9 (4)	C103—C104—C107	102.0 (3)
С5—С4—Н4А	113.8	C105—C104—H10F	114.3
С7—С4—Н4А	113.8	C103—C104—H10F	114.3
С3—С4—Н4А	113.8	C107—C104—H10F	114.3
C4—C5—C6	103.7 (6)	C106—C105—C104	103.8 (4)
С4—С5—Н5А	111.0	C106—C105—H10Q	111.0
С6—С5—Н5А	111.0	C104—C105—H10Q	111.0
С4—С5—Н5В	111.0	C106—C105—H10R	111.0

С6—С5—Н5В	111.0	C104—C105—H10R	111.0
H5A—C5—H5B	109.0	H10Q—C105—H10R	109.0
C1—C6—C5	102.5 (5)	C105—C106—C101	105.7 (4)
С1—С6—Н6А	111.3	С105—С106—Н10О	110.6
С5—С6—Н6А	111.3	C101—C106—H10O	110.6
С1—С6—Н6В	111.3	C105—C106—H10P	110.6
С5—С6—Н6В	111.3	C101—C106—H10P	110.6
Н6А—С6—Н6В	109.2	H100—C106—H10P	108.7
C1—C7—C4	93.7 (5)	C101—C107—C104	94.9 (3)
С1—С7—Н7А	113.0	C101—C107—H10G	112.8
С4—С7—Н7А	113.0	C104—C107—H10G	112.8
С1—С7—Н7В	113.0	С101—С107—Н10Н	112.8
С4—С7—Н7В	113.0	С104—С107—Н10Н	112.8
H7A—C7—H7B	110.4	Н10G—С107—Н10Н	110.2
C1—C8—H8A	109.5	C101—C108—H10I	109.5
C1—C8—H8B	109.5	C101—C108—H10J	109.5
H8A—C8—H8B	109.5	H10I—C108—H10J	109.5
C1—C8—H8C	109.5	C101—C108—H10K	109.5
H8A—C8—H8C	109.5	H10I—C108—H10K	109.5
H8B—C8—H8C	109.5	H10J—C108—H10K	109.5
С3—С9—Н9А	109.5	C103—C109—H10L	109.5
С3—С9—Н9В	109.5	C103—C109—H10M	109.5
Н9А—С9—Н9В	109.5	H10L—C109—H10M	109.5
С3—С9—Н9С	109.5	C103—C109—H10N	109.5
Н9А—С9—Н9С	109.5	H10L—C109—H10N	109.5
Н9В—С9—Н9С	109.5	H10M—C109—H10N	109.5

С3—С10—Н10А	109.5	C103—C110—H11E	109.5
C3—C10—H10B	109.5	C103—C110—H11F	109.5
H10A—C10—H10B	109.5	H11E—C110—H11F	109.5
C3—C10—H10C	109.5	C103—C110—H11G	109.5
H10A—C10—H10C	109.5	H11E—C110—H11G	109.5
H10B—C10—H10C	109.5	H11F—C110—H11G	109.5
01—C11—N1	121.9 (3)	O101—C111—N101	121.6 (3)
01—C11—C12	121.5 (3)	O101—C111—C112	122.0 (3)
N1—C11—C12	116.6 (3)	N101—C111—C112	116.3 (3)
C17—C12—C13	120.5 (3)	C117—C112—C113	119.3 (3)
C17—C12—C11	121.6 (3)	C117—C112—C111	121.9 (3)
C13—C12—C11	117.8 (3)	C113—C112—C111	118.8 (3)
N2-C13-C12	119.8 (3)	N102—C113—C114	123.0 (3)
N2-C13-C14	121.5 (3)	N102—C113—C112	118.0 (3)
C12—C13—C14	118.6 (3)	C114—C113—C112	118.8 (3)
C15—C14—C13	119.0 (4)	C115—C114—C113	120.9 (3)
C15—C14—H14A	120.5	C115—C114—H11A	119.5
C13—C14—H14A	120.5	C113—C114—H11A	119.5
C14—C15—C16	122.6 (4)	C114—C115—C116	121.1 (3)
C14—C15—H15A	118.7	C114—C115—H11D	119.4
C16—C15—H15A	118.7	C116—C115—H11D	119.4
C17—C16—C15	118.1 (4)	C117—C116—C115	118.8 (4)
C17—C16—H16A	121.0	C117—C116—H11C	120.6
C15—C16—H16A	121.0	C115—C116—H11C	120.6
C16—C17—C12	121.3 (4)	C116—C117—C112	121.0 (3)
С16—С17—Н17А	119.3	C116—C117—H11B	119.5

C12—C17—H17A	119.3	C112—C117—H11B	119.5
C13—N2—C2—N1	-38.8 (4)	C113—N102—C102—N101	-42.0 (4)
C13—N2—C2—C1	-158.6 (3)	C113—N102—C102—C101	-161.0 (3)
C13—N2—C2—C3	85.6 (4)	C113—N102—C102—C103	82.4 (4)
C11—N1—C2—N2	30.5 (5)	C111—N101—C102—N102	32.0 (4)
C11—N1—C2—C1	151.3 (3)	C111—N101—C102—C101	152.6 (3)
C11—N1—C2—C3	-95.7 (4)	C111—N101—C102—C103	-94.6 (4)
C6—C1—C2—N2	-58.2 (5)	C108—C101—C102—N102	73.4 (4)
C7—C1—C2—N2	-166.0 (4)	C106—C101—C102—N102	-58.5 (4)
C8—C1—C2—N2	70.9 (5)	C107—C101—C102—N102	-162.0(3)
C6—C1—C2—N1	-176.2 (4)	C108—C101—C102—N101	-43.6 (5)
C7—C1—C2—N1	76.1 (4)	C106—C101—C102—N101	-175.5 (3)
C8—C1—C2—N1	-47.0 (5)	C107—C101—C102—N101	81.0 (3)
C6—C1—C2—C3	64.9 (5)	C108—C101—C102—C103	-162.3 (4)
C7—C1—C2—C3	-42.8 (4)	C106—C101—C102—C103	65.7 (4)
C8—C1—C2—C3	-166.0 (4)	C107—C101—C102—C103	-37.7 (3)
N2—C2—C3—C10	4.4 (6)	N102—C102—C103—C109	2.3 (5)
N1—C2—C3—C10	126.0 (5)	N101—C102—C103—C109	123.5 (4)
C1—C2—C3—C10	-116.5 (5)	C101—C102—C103—C109	-119.4 (4)
N2—C2—C3—C9	-116.2 (5)	N102—C102—C103—C104	124.8 (3)
N1—C2—C3—C9	5.4 (6)	N101—C102—C103—C104	-114.0(3)
C1—C2—C3—C9	123.0 (5)	C101—C102—C103—C104	3.1 (3)
N2—C2—C3—C4	128.0 (4)	N102—C102—C103—C110	-119.3 (4)
N1—C2—C3—C4	-110.4 (4)	N101—C102—C103—C110	1.9 (4)
C1—C2—C3—C4	7.2 (4)	C101—C102—C103—C110	119.0 (4)
C10—C3—C4—C5	42.1 (8)	C109—C103—C104—C105	50.1 (5)

C9—C3—C4—C5	164.0 (6)	C110-C103-C104-C105	168.9 (4)
C2—C3—C4—C5	-77.8 (6)	C102—C103—C104—C105	-72.3 (4)
C10—C3—C4—C7	150.5 (5)	C109—C103—C104—C107	155.8 (4)
C9—C3—C4—C7	-87.6 (6)	C110—C103—C104—C107	-85.4 (4)
C2—C3—C4—C7	30.7 (5)	C102—C103—C104—C107	33.4 (4)
C7—C4—C5—C6	-37.9 (7)	C103—C104—C105—C106	68.3 (5)
C3—C4—C5—C6	70.7 (8)	C107—C104—C105—C106	-38.7 (5)
C7—C1—C6—C5	31.7 (6)	C104—C105—C106—C101	4.0 (5)
C8—C1—C6—C5	157.2 (6)	C108—C101—C106—C105	156.1 (4)
C2—C1—C6—C5	-74.3 (6)	C102—C101—C106—C105	-72.7 (5)
C4—C5—C6—C1	3.7 (8)	C107—C101—C106—C105	31.5 (5)
C6—C1—C7—C4	-52.7 (5)	C108—C101—C107—C104	-178.3 (4)
C8—C1—C7—C4	-177.4 (4)	C106—C101—C107—C104	-53.4 (4)
C2—C1—C7—C4	61.0 (4)	C102—C101—C107—C104	57.8 (3)
C5—C4—C7—C1	55.9 (5)	C105—C104—C107—C101	57.1 (4)
C3—C4—C7—C1	-56.8 (5)	C103—C104—C107—C101	-56.3 (4)
C2—N1—C11—O1	171.8 (3)	C102—N101—C111—O101	175.9 (3)
C2—N1—C11—C12	-8.9 (5)	C102—N101—C111—C112	-7.7 (5)
01—C11—C12—C17	-5.4 (5)	O101—C111—C112—C117	-12.5 (5)
N1—C11—C12—C17	175.3 (3)	N101—C111—C112—C117	171.2 (3)
01—C11—C12—C13	171.2 (3)	O101—C111—C112—C113	165.6 (3)
N1-C11-C12-C13	-8.1 (4)	N101—C111—C112—C113	-10.8 (4)
C2—N2—C13—C12	26.8 (5)	C102—N102—C113—C114	-155.5 (3)
C2—N2—C13—C14	-157.4 (4)	C102—N102—C113—C112	28.9 (4)
C17—C12—C13—N2	176.2 (3)	C117—C112—C113—N102	178.7 (3)
C11—C12—C13—N2	-0.5 (5)	C111—C112—C113—N102	0.6 (4)

C17—C12—C13—C14	0.3 (5)	C117—C112—C113—C114	2.8 (5)
C11—C12—C13—C14	-176.4 (3)	C111—C112—C113—C114	-175.3 (3)
N2-C13-C14-C15	-176.3 (4)	N102—C113—C114—C115	-178.4 (4)
C12—C13—C14—C15	-0.5 (6)	C112—C113—C114—C115	-2.8 (5)
C13—C14—C15—C16	-0.3 (7)	C113—C114—C115—C116	0.7 (6)
C14—C15—C16—C17	1.3 (8)	C114—C115—C116—C117	1.5 (6)
C15—C16—C17—C12	-1.4 (7)	C115—C116—C117—C112	-1.4 (6)
C13—C12—C17—C16	0.7 (6)	C113—C112—C117—C116	-0.8 (5)
C11—C12—C17—C16	177.3 (4)	C111—C112—C117—C116	177.3 (3)

Table S3	Hydrogen-bond geometry (Å	°)
	Tryutogen-bond geometry (A,	

D—H···A	<i>D</i> —Н (Å)	$\mathrm{H}^{\dots}A(\mathrm{\AA})$	$D^{\dots}A$ (Å)	$\angle D$ —H···A (°)
N1—H1A…O101	0.86	2.19	2.989 (3)	154.7
N101—H10E…O1	0.86	2.15	2.942 (3)	153.4
$N102$ — $H10D$ ···O 101^{i}	0.86	2.72	3.372 (4)	134.0
C114— $H11A$ ···O1 ⁱ	0.93	2.73	3.453 (4)	135.2
C114—H11A…O101 ⁱ	0.93	2.70	3.508 (5)	145.8

Symmetry code(s): (i) -x + 2, y - 1/2, -z + 1/2.