

Volume 75 (2019)

Supporting information for article:

The many flavours of halogen bonds – message from experimental electron density and Raman spectroscopy

Ruimin Wang, Janine George, Shannon Kimberly Potts, Marius Kremer, Richard Dronskowski and Ulli Englert

Supporting Information:

The many flavours of halogen bonds – messages from experimental electron density and Raman spectroscopy

Ruimin Wang, Janine George, Shannon Kimberly Potts, Marius Kremer, Richard Dronskowski and Ulli Englert

August 10, 2019

List of Tables

S1	$I \cdots N$ and C —I distances in TFDIB····N donor adducts for which an experimental	
	electron density is available.	4
S2	Resolution & completeness statistics (cumulative and Friedel pairs averaged)	4
S3	R-value statistics (IAM) as a function of resolution (in resolution shell)	5
S5	Bond distances $(Å)$ for 2	7
$\mathbf{S6}$	Bond angles (°) for 2 .	7
S7	Angles (°) of intermolecular interactions for 2 .	7
$\mathbf{S8}$	Topological properties in the bond critical points of the experimental electron density.	15
S4	Contraction parameters and Population coefficients	19

List of Figures

S1	Mechanochemical synthesis of 2: solids shortly mixed without grinding, black;	
	cocrystals from solution, blue	3
S2	scatterplot: Anticorrelation between I—C distances and I \cdots N	3
S3	MM refinement results for 2	6
S4	Displacement ellipsoid plot of TFDIB DABCO aggregate in ${f 2}$ at the 90% probability	
	level; hydrogen atoms omitted.	7
S5	DRplot for 2	8
$\mathbf{S6}$	Scatterplot $F_{obs}^2/F_{calc}^2 vs \sin\theta/\lambda$ for X-ray refinement result (MM) for 2	9
S7	Averaged $K = \sum (F_{obs}^2) / \sum (F_{calc}^2) vs \sin\theta / \lambda$ for X-ray refinement result (MM) for 2 .	9
$\mathbf{S8}$	Averaged $K = \sum (F_{obs}) / \sum (F_{calc}) vs sin\theta / \lambda$ for X-ray refinement result (MM)	
	for 2	9
S9	Fractal dimension plots [1, 2] vs residual electron density.	10
S10	Probability distribution histogram [1, 2] vs residual electron density.	10
S11	Normal probability plots [1, 2]	11

Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany. Fax: +49 241 8092 288; Tel: +49 241 809 4666 ; E-mail: ullrich.englert@ac.rwth-aachen.de

S12	Residual electron density after the multipole refinement. Green: positive red: neg-	
	ative blue: zero	11
S13	xdprop bcp part results for 2	12
S14	I2··· N2 ^{<i>i</i>} electron density ρ (e/Å ³) distribution for 2	14
S15	Short $N \cdots I$ contact in the aggregate in 2 ; Hirshfeld surface is shown for the TFDIB	
	and DABCO moiety. The surface colours code the electrostatic potential (red neg-	
	ative, blue positive) [6]. \ldots	16
S16	$ \nabla \rho $ from calculation; bond paths are shown as black lines, bond critical points as	
	black solid circles, and ring critical points as green solid circles.[7]	17
S17	Laplacian of the electron density obtained by calculation $(\nabla^2 \rho)$; contours are at	
	$\pm 2^n \cdot 10^{-3}$ a.u. Positive values are in blue and negative values in red 2	17

1 Experimental powder patterns for cocrystals grown from powder and by grinding.

Figure S1: Mechanochemical synthesis of 2: solids shortly mixed without grinding, black; cocrystals from solution, blue.

2 scatterplot: Anticorrelation between I—C distances and I \cdots N

Figure S2: scatterplot: Anticorrelation between I—C distances and I···N for 29 error-free CSD entries of TFDIB cocrystals with I···N less or equal 2.8 Å (error-free structures without disorder, powder structures excluded). The correlation coefficient amounts to -0.764.

Compound	Reference	I…N [Å]	C–I [Å]	ρ [eÅ ⁻³]
BPE·TFDIB	Bianchi et al., 2003	2.7804(8)	2.0969(7)	0.236(2)
Al(acacCN)3 · TFDIB	Merkens et al., 2013	2.833(3)	2.096(2)	0.154(12)
1	Wang et al., 2018b	2.6622(4)	2.1168(4)	0.359(4)
2	this work	2.7374(11)	2.1134(10)	0.19(2)
		2.7453(11)	2.1119(10)	0.16(2)

Table S1: $I \cdots N$ and C - I distances in TFDIB $\cdots N$ donor adducts for which an experimental electron density is available.

3 Data collection details

Temperature (K)	100
Radiation (Å)	$MoK_{\alpha} 0.71073$
θ Min–Max (°)	3.1 - 45.50
Dataset	-13: 11 ; -21: 19 ; -22: 22
Tot., Uniq. Data, R(int)	143675,12807,0.0493

Table S2: Resolution & completeness statistics (cumulative and Friedel pairs averaged)Theta sin(th)/Lambda CompleteExpected MeasuredMissing

20.82	0.500	0.996	1595	1589	6
23.01	0.550	0.997	2127	2121	6
25.24	0.600	0.998	2764	2758	6
27.51	0.650	0.998	3514	3508	6
29.84	0.700	0.998	4386	4377	9
32.21	0.750	0.996	5386	5367	19
34.65	0.800	0.996	6525	6500	25
37.17	0.850	0.995	7849	7809	40
39.77	0.900	0.994	9316	9258	58
42.47	0.950	0.992	10938	10853	85
45.29	1.000	0.991	12800	12683	117
45.50	1.004	0.990	12930	12807	123

Note: The Reported Completeness refers to the Actual ${\rm H,K,L}$ Index Range

4 Structure refinement

 Table S3: R-value statistics (IAM) as a function of resolution (in resolution shell)

Theta s	in(Th)/L	#	R1	wR2	S	Rs	av(I/SigW)	av(I)	av(SigW)
12.38	0.302	343	0.014	0.036	2.360	0.008	58.23	6325.94	82.61
15.68	0.380	349	0.015	0.035	1.997	0.011	50.00	3787.29	58.37
18.02	0.435	351	0.012	0.027	1.582	0.009	50.33	2839.75	39.90
19.90	0.479	364	0.014	0.030	1.630	0.011	46.77	2281.01	34.86
21.51	0.516	333	0.014	0.029	1.326	0.014	37.62	1848.92	33.70
22.94	0.548	364	0.013	0.027	1.197	0.016	35.57	1616.70	31.07
24.22	0.577	345	0.014	0.029	1.180	0.018	32.44	1326.62	28.89
25.40	0.603	353	0.014	0.029	1.037	0.022	28.24	1168.97	29.60
26.49	0.628	355	0.018	0.034	1.058	0.029	23.30	1008.67	31.98
27.52	0.650	351	0.019	0.036	0.949	0.037	19.69	895.69	35.12
28.49	0.671	341	0.021	0.041	1.065	0.037	19.18	894.16	35.04
29.41	0.691	360	0.023	0.045	1.076	0.044	16.79	718.92	33.06
30.28	0.709	340	0.024	0.048	1.036	0.048	15.64	726.70	35.84
31.12	0.727	352	0.022	0.040	0.861	0.052	15.32	595.23	32.18
31.93	0.744	340	0.017	0.033	0.827	0.041	18.05	564.27	24.07
32.71	0.760	349	0.015	0.029	0.715	0.042	17.93	492.42	21.51
33.46	0.776	364	0.017	0.032	0.756	0.044	17.22	490.32	22.27
34.20	0.791	337	0.017	0.036	0.815	0.047	16.81	471.43	22.85
34.91	0.805	337	0.018	0.033	0.635	0.058	13.31	355.11	21.14
45.50	1.004	6179	0.022	0.041	0.627	0.087	10.19	230.05	20.22

$$R_{\sigma} = \sum (\sigma(I)) / \sum (I) = 0.0276$$

Residuals after cycle 18

R{F} = 0.0268 R{F^2} = 0.0221 GOFw = 0.8807	GOF	=	0.9940	Rw{F} Rw{F^2} Nref/Nv	=	0.0142 0.0271 27.6013
Mean(Shift/su) = 0.6208 Max(Shift/su) = 0.8268	71E-06 61E-04	for	variable	1/KS		
Atom-Group(s) 1 (-0.00020)	(net ch	narge)			
Isotropic Extinction Type_	1 Lorer	ntzia	n Distribu	tion Mosai	c Sp	read_0
Mosaic Spread (seco 0.657811	nds): E+03		Doma	n Size (ce	ntim 5465	eters): 7E-06
After cycle 18 conv Proceed to last cyc	ergence le to f	e cri final	terion was ise output	s met		
After cycle 18 conv Proceed to last cyc	ergence le to f	e cri final	terion was ise output	s met		
After cycle 18 conv Proceed to last cyc 	= 128	e cri final	terion was ise output	s met		
After cycle 18 conv Proceed to last cyc Number of data Rejected based on OBS	= 128	e cri final	terion was ise output	s met :s		
After cycle 18 conv Proceed to last cyc Number of data Rejected based on OBS Rejected based on SIGOBS	= 128	e cri final 307 0 0	terion was ise output	s met :s		
After cycle 18 conv Proceed to last cyc 	= 128 = =	e cri final 307 0 0 0	terion was ise output	s met :s		
After cycle 18 conv Proceed to last cyc Number of data Rejected based on OBS Rejected based on SIGOBS Rejected based on SINTHL Total number of rejections	= 128 = =	e cri final 307 0 0 0 0 0	terion was ise output	s met :s		
After cycle 18 conv Proceed to last cyc Number of data Rejected based on OBS Rejected based on SIGOBS Rejected based on SINTHL Total number of rejections Included in the refinement	= 128 = = = = = = 128	8 cri final 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	terion was ise output	s met :s		
After cycle 18 conv Proceed to last cyc Number of data Rejected based on OBS Rejected based on SIGOBS Rejected based on SINTHL Total number of rejections Included in the refinement Residua	= 128 = = = = = = = = = = = 128	e cri final 307 0 0 0 0 307 307	terion was ise output	s met .s		
After cycle 18 conv Proceed to last cyc Proceed to last cyc Number of data Rejected based on OBS Rejected based on SIGOBS Rejected based on SINTHL Total number of rejections Included in the refinement Residua R(F) = 0.0268	= 128 = = = = = = = 128	<pre>> cri final 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 </pre>	terion was ise output	Bw{F}		0.0142
After cycle 18 conv Proceed to last cyc Proceed to last cyc Number of data Rejected based on OBS Rejected based on SISOBS Rejected based on SINTHL Total number of rejections Included in the refinement Residua R{ F} = 0.0268 R{F^2} = 0.0221	= 128 = = = = = = = = 128	e cri final 307 0 0 0 0 0 0 307 307 	terion was ise output	Rw{ F } Rw{F^2}		0.0142 0.0271

Figure S3: MM refinement results for 2.

Refinement was conducted with all intensity data. The final Multipole refinements on F^2 comprised multipoles up to hexadecapoles for non-H atoms and up to bond–directed dipoles for the H atoms. In the MM, C–H distances were constrained to 1.09 Å.

Chemical constrains for C1, C4;

C2, C3, C5, C6; C11,C12,C13,C14,C15,C16; all H-atome.

Contraction parameters κ for non-H atoms were refined freely in a step-wise approach; $\kappa' = 1.0$ for non-H atoms, $\kappa' = 1.2$ for H atoms.

Contraction parameters and multipole population coefficients (see Table S4)

Figure S4: Displacement ellipsoid plot of TFDIB DABCO aggregate in **2** at the 90% probability level; hydrogen atoms omitted.

Т	able S5: Bond	distances (Å) for 2	Table	S6: Bon	d angles (°)	for 2 .
		i distances (<u> </u>	I1-C1-	-C2	121.76(7)	
$N1 \cdots I1$	2.7374(11)	$N2^i \cdots I2$	2.7453(11)	11 C1	CC	121.00(7)	
I1—C1	2.1134(10)	I2—C4	2.1119(10)	II—CI-	-00	121.22(7)	
F1 C2	1.2498(18)	E2 C2	1.2472(10)	C2-C1	l-C6	116.84(8)	
F1	1.3420(10)	F2	1.3473(19)	F1—C2	2—C1	120.31(10)	
F3—C5	1.3390(17)	F4-C6	1.3434(19)	\mathbf{F}_{2}	c_{2}	118 00(0)	
C1-C2	1.3892(13)	C1-C6	1.3884(13)	F2-00)—02	118.09(9)	
$C_2 - C_3$	1.3864(14)	C5 - C6	1.3870(13)	C11—N	1 - C15	109.08(9)	
02-03	1.0004(14)	CJC0	1.3019(13)	C13—N	V1—C15	108.52(9)	
C3-C4	1.3905(13)	C4-C5	1.3918(13)	C12_N	J2 - C16	10857(9)	
N1—C11	1.4707(15)	N1—C13	1.4764(15)	C12 1	$\frac{12}{10}$	100.07(3)	
N1 - C15	1.4746(15)	N2-C12	1.4721(15)	C16—N	2 - C14	109.18(9)	
NI CIU	1.4740(10)	N2 012	1.4721(10)	N1—C1	11—C12	109.89(9)	
N2-C14	1.4734(14)	N2-C16	1.4744(14)	N2-C1	12 - C11	110 11(8)	
C11-C12	1.5513(14)	C13—C14	1.5507(14)	N2-01		110.11(0)	
C15 - C16	15494(14)			N2-C1	14 - C13	110.01(8)	
010 -010	1.0494(14)			N1—C1	13—C14	109.91(8)	

Table S7: Angles (°) of intermolecular interactions for 2.

$N1 \cdots I1 - C1$	173.21(4)
$N2^i \cdots I2$ —C4	173.98(4)
$\mathrm{F1}{\cdots}\mathrm{H15A}^{ii}\mathrm{-\!C15}^{ii}$	131
$F2 \cdots H16A^{iii} - C16^{iii}$	172
$F4 \cdots H12B^{iv} - C12^{iv}$	156
$C5 - F3 \cdot \cdot \cdot F3^v$	96.77(10)

$$i = -2 + x, -1 + y, z; ii = 2 - x, 1 - y, 2 - z; iii = -1 + x, -1 + y, z; iv = 2 - x, 1 - y, 1 - z; v = -x, -y, 1 - y, 1 - z; v = -x, -y, 1 - y,$$

Figure S5: DRplot for 2.

Figure S6: Scatterplot $F_{obs}^2/F_{calc}^2 vs sin\theta/\lambda$ for X-ray refinement result (MM) for 2.

Figure S7: Averaged $K = \sum (F_{obs}^2) / \sum (F_{calc}^2) vs \sin\theta / \lambda$ for X-ray refinement result (MM) for 2.

Figure S8: Averaged $K = \sum (|F_{obs}|) / \sum (|F_{calc}|) vs sin \theta / \lambda$ for X-ray refinement result (MM) for **2**.

4.1 Residual electron density distribution

Figure S9: Fractal dimension plots [1, 2] vs residual electron density.

Figure S10: Probability distribution histogram [1, 2] vs residual electron density.

Figure S11: Normal probability plots [1, 2].

(a) contour 0.1 $e{\cdot} {\rm \AA}^{-3}$

(b) contour 0.15 $e \cdot \text{Å}^{-3}$

Figure S12: Residual electron density after the multipole refinement. Green: positive red: negative blue: zero

5 Topological analysis (AIM)

5.1 Bond critical points

		Bond	f		del2f		Rij d1 d2 Hessian Figenvalues ellin
	I(1)	-N(1)	0.229(0)	2.073(0)	2.7351 1.5256 1.2095 -0.60 -0.59 3.26 0.02
		Bond	f		del2f		Rij d1 d2
	I(2)	-X1_N(2)	0.226(0)	2.047(0)	Hessian Eigenvalues ellip 2.7438 1.5305 1.2133 -0.59 -0.58 3.21 0.02
		Bond	f		del2f		Rij d1 d2
	I(1)	-C(1)	0.701(0)	3.178(0)	Hessian Eigenvalues ellip 2.1149 1.1844 0.9305 -2.28 -2.23 7.69 0.02
		Bond	f		del2f		Rij d1 d2
	I(2)	-C (4)	0.703(0)	3.180(0)	Hessian Eigenvalues ellip 2.1133 1.1836 0.9298 -2.29 -2.24 7.70 0.02
	Searcl	hing internuclea	r distan	ces b	etween 1.2	200	and 2.000 Angstroms
		Bond	f		del2f		Rij d1 d2
	F(1)	-C(2)	1.728(0)	1.169(0)	Hessian Eigenvalues ellip 1.3482 0.8092 0.5389
	F(2)	-C(3)	1.726(0)	1.192(0)	-9.52 -9.26 19.95 0.03 1.3487 0.8093 0.5394
	F(3)	-C(5)	1.741(0)	0.969(0)	-9.51 -9.25 19.96 0.03 1.3439 0.8090 0.5349
	F(4)	-C(6)	1.724(0)	1.239(0)	-9.58 -9.31 19.86 0.03 1.3496 0.8093 0.5403
	N(1)	-C(11)	1.404(0)	3.110(0)	-9.50 -9.24 19.98 0.03 1.4721 0.8015 0.6706
	N(1)	-C(13)	1.395(0)	3.203(0)	-6.98 -6.94 17.03 0.01 1.4756 0.8027 0.6729 -6.93 -6.88 17.01 0.01
		Bond	f		del2f		Rij d1 d2 Hessian Figenvalues ellin
	I(1)	-N(1)	0.177((6)	1.984((3	3) 2.7388 1.4436 1.2952 -0.42 -0.35 2.76 0.20
		Bond	f		del2f		Rij d1 d2
	I(2)	-X1_N(2)	0.158((6)	1.947(3	Hessian Eigenvalues ellip 3) 2.7439 1.4241 1.3198 -0.34 -0.27 2.55 0.26
		Bond	f		del2f		Rij d1 d2
	I(1)	-C(1)	0.603((17)	4.846(13	Hessian Eigenvalues ellip 3) 2.1145 1.1509 0.9636 -2.13 -1.66 8.64 0.28
		Bond	f		del2f		Rij d1 d2
	I(2)	-C(4)	0.610((17)	5.112(14	Hessian Eigenvalues ellip 4) 2.1146 1.1395 0.9751 -2.13 -1.68 8.92 0.27
	Searc	hing internucle	ar dista	inces	between 1	20	00 and 2.000 Angstroms
		Bond	f		del2f		Rij d1 d2
	F(1)	-C(2)	1.459((55)	9.384(181	Hessian Eigenvalues ellip 1.3492 0.8275 0.5216
	F(2)	-C (3)	1.499((55)	8.929 (177	-8.34 -5.48 23.20 0.52 7) 1.3569 0.8234 0.5336
	F(3)	-C(5)	1.363((56)	11.810(190	-9.29 -6.56 24.77 0.42 0) 1.3501 0.8434 0.5067
	F(4)	-C (6)	1.473((58)	9.163(203	-7.74 -5.04 24.59 0.54 3) 1.3444 0.8380 0.5064
	N(1)	-C(11)	1.485((23)	4.342 (22	-9.09 -5.62 23.87 0.62 2) 1.4730 0.7870 0.6860
1	N(1)	-c (13)	1.460((20)	4.794(-8.47 -7.85 20.66 0.08 5) 1.4786 0.7955 0.6831
L							-8.13 -7.44 20.37 0.09

Figure S13: xdprop bcp part results for 2.

(b) up to l=1

(a) IAM

		Bond	f	del2f	Rij dl d2	-11:-
	I(1)	-N(1)	0.173(9)	2.197(3)	2.7399 1.4055 1.3345	errib
					-0.39 -0.34 2.93	0.15
		Bond	f	del2f	Rij dl d2	
	T (2)	N(2)	0 159 (9)	2 1997 4)	Hessian Eigenvalues	ellip
	1(2)	A1_N(2)	0.135(5)	2.155(4)	-0.37 -0.28 2.84	0.33
		Rand	£	do125		
		Bolid	1	delzi	Hessian Eigenvalues	ellip
	I(1)	-C(1)	0.658(21)	4.914(29)	2.1148 1.1126 1.0022	0.04
					-2.52 -2.42 5.65	0.04
		Bond	f	del2f	Rij dl d2	allin
	I(2)	-C(4)	0.672(21)	5.396(31)	2.1154 1.0913 1.0241	errib
					-2.74 -2.49 10.63	0.10
	Searc	hing internuclea	r distances b	etween 1.200	and 2.000 Angstroms	
		Band	£	4-105		
		Bolid	1	Q6121	Hessian Eigenvalues	ellip
	F(1)	-C(2)	2.053(59)	-18.505(265)	1.3457 0.7859 0.5598	0.15
	F(2)	-C(3)	2.117(59)	-14.875(256)	1.3488 0.7713 0.5775	0.15
	m(2)	- (1)	1 000 (00)	-10 694 (366)	-18.47 -16.62 20.21	0.11
	F(3)	-0(5)	1.806(69)	-12.594(355)	-14.84 -13.47 15.71	0.10
	F(4)	-C(6)	2.063(62)	-19.731(290)	1.3421 0.7917 0.5505	0.10
	N(1)	-C(11)	1.821(29)	-11.078(60)	1.4717 0.8155 0.6561	0.10
		- (1.0)		10.0414.000	-13.77 -12.91 15.60	0.07
(c) up to $l=3$	N(1)	-0(13)	1.811(25)	-10.841(33)	-13.18 -12.86 15.20	0.02
(c) up to 1–0						
		Bond	f	del2f	Rij d1 d2	
	т	(1) - N(1)	0.187(10)	2,071(Hessian Eigenvalues 5) 2.7511 1.4560 1.2951	ellip
	-	(=) = (=)	01107 (110)		-0.72 -0.33 3.12	1.17
		Bond	f	del2f	Rij d1 d2	
					Hessian Eigenvalues	ellip
		Bond	f	del2f	Rij d1 d2	
	т	(1) -C(1)	0 695 (25)	4 715 (4	Hessian Eigenvalues	ellip
	1	(1) -C(1)	0.000(20)	, 1./13(1	-3.26 -2.11 10.09	0.54
		Bond	f	del2f	Rij dl d2	
		Dona	-	00121	Hessian Eigenvalues	ellip
	I	(2) -C(4)	0.694(25)) 4.610(3	9) 2.1200 1.1391 0.9809 -3.45 -1.97 10.03	0.75
	~					
	3	earching internuc	clear distance:	s between 1.2	00 and 2.000 Angstroms	
		Bond	f	del2f	Rij dl d2 Mossion Rigoryaluos	allin
	F	(1) -C(2)	2.032(49)) -18.897 (20	9) 1.3438 0.7860 0.5578	errib
	म	(2) -C(3)	2,072(37)	-22,624(8)	-20.47 -14.99 16.56	0.37
	-	, 0,0,	2.372(37)		-19.68 -18.36 15.42	0.07
	F	(3) -C(5)	2.080(36)) -22.244(8	0) 1.3390 0.8045 0.5345 -19.98 -17.65 15.38	0.13
	F	(4) -C(6)	2.129(35)) -26.829(7	7) 1.3449 0.8185 0.5264	
	N	(1) -C(11)	1.849(39)) -14.344(12	-21.50 -18.88 13.55 5) 1.4708 0.8217 0.6490	0.14
		(1)(12)	1 0757 400	_14 035/11	-14.50 -13.77 13.93	0.05
(d) dup to $l=4$	N	(1) -0(13)	1.875(40)	, -14.035(11	-15.46 -13.38 14.81	0.16
Surprise: bv	search	ning <i>bcp</i> betwee	n I $2 \cdots N2^{i}$ ı	10 success. b	ecause it is not conver	rgent
Surprise, by			1,2,1			-0-110.

Figure S14: $I2 \cdots N2^i$ electron density ρ (e/Å³) distribution for 2. Searching between atoms I(2) and X1_N(2)

Step	х у	z	Grad(f)	Max. step-size
0	-2.9363 -3.545	5 8.2035	1.837E-01	
1	-2.8863 -3.595	5 8.2535	1.652E-01	0.05000
2	-2.8363 -3.645	5 8.3035	1.332E-01	0.05000
3	-2.7863 -3.695	5 8.3535	9.313E-02	0.05000
4	-2.7363 -3.745	5 8.4035	5.398E-02	0.05000
5	-2.6863 -3.795	5 8.4535	3.885E-02	0.05000
6	-2.6363 -3.845	5 8.4645	5.120E-02	0.05000
7	-2.5863 -3.895	5 8.4145	5.823E-02	0.05000
8	-2.5363 -3.945	5 8.3645	7.072E-02	0.05000
9	-2.5863 -3.895	5 8.4145	5.823E-02	0.05000
10	-2.5613 -3.920	5 8.3895	6.403E-02	0.02500
11	-2.5863 -3.895	5 8.4145	5.823E-02	0.02500
12	-2.5738 -3.908	0 8.4020	6.099E-02	0.01250

found by search on a grid of 0.300 Å

```
16 critical point(s) found, function value = 0.158996
Bond Critical Point
                    16 connects atoms I(2) and X1_N(2)
Bond path to I(2) =
                        1.5145 Angstroms
Bond path to X1_N(2) =
                            1.3316 Angstroms
Total bond path =
                       2.8461 Angstroms
                       2.7453 Angstroms
Distance
               =
Ratio
               =
                       1.0367
              property increases...
              nsteps =
                            5 pathlength =
                                                 0.016841 Angstroms
              nsteps =
                            45
                                pathlength =
                                                 4.115783 Angstroms
                                 pathlength =
              nsteps =
                            10
                                                 1.330600 Angstroms
                                pathlength =
              nsteps =
                             9
                                                 1.513574 Angstroms
```

5.2 Topological properties in the bond critical points of the experimental electron density

Bond	dist.(Å)	$R_{ij}(\text{\AA})$	$d_1(\text{\AA})$	$ ho(e \cdot \mathrm{\AA}^{-3})$	$ abla^2 ho(e \cdot \mathrm{\AA}^{-5})$	G(a.u.)	$\frac{G}{\rho}(a.u.)$	V(a.u.)	$\frac{ V }{G}$	E(a.u.)
$I1 \cdots N1$	2.7374(11)	2.7616	1.4660	0.19(2)	2.071(5)	0.0216	0.78	-0.0217	1.00	-0.0001
calc.		2.7374	1.4144	0.229	1.716	0.0222	0.65	-0.0267	1.20	-0.0045
$I2 \cdots N2^i$	2.7453(11)	2.8461	1.5145	0.16(2)	1.807(5)	0.0181	0.77	-0.0174	0.96	0.0007
calc.		2.7453	1.4158	0.228	1.668	0.0217	0.64	-0.0261	1.20	-0.0044
$F1 \cdots H15A^{ii}$	2.59	2.6176	1.4785	0.038(2)	0.553(2)	0.0043	0.77	-0.0029	0.67	0.0014
$F2 \cdots H16A^{iii}$	2.47	2.4722	1.4911	0.038(2)	0.708(2)	0.0054	0.96	-0.0035	0.65	0.0019
$F4 \cdots H12B^{iv}$	2.41	2.4193	1.4421	0.046(2)	0.836(2)	0.0065	0.95	-0.0043	0.66	0.0022
$F3 \cdots F3^{v}$	2.893(2)	2.8958	1.4658	0.045(2)	0.765(4)	0.0060	0.89	-0.0040	0.67	0.0020
I1—C1		2.1147	1.1300	0.69(3)	4.72(5)					
I2—C4		2.1200	1.1391	0.69(3)	4.61(4)					
F1-C2		1.3438	0.7860	2.03(5)	-18.9(3)					
F2-C3		1.3475	0.8059	2.07(4)	-22.62(9)					
F3—C5		1.3390	0.8045	2.08(4)	-22.24(8)					
F4-C6		1.3449	0.8185	2.13(4)	-26.83(8)					
C1-C2		1.3891	0.6690	2.18(4)	-21.8(2)					
C2-C3		1.3883	0.6943	2.22(2)	-21.70(8)					
N1—C11		1.4708	0.8217	1.85(4)	-14.3(2)					
N2-C12		1.4730	0.8185	1.95(4)	-18.0(2)					
C11— $C12$		1.5517	0.7863	1.70(3)	-15.88(6)					

Table S8: Topological properties in the bond critical points of the experimental electron density.

Topological properties of (3, -1) critical points for the most relevant intermolecular interactions; d_1 (d_2) is the Bondpath lange from the first (second) atom to the (3, -1) critical point, $R_{ij} = d_1 + d_2$, ρ is the electron density, $\nabla^2 \rho$ is the Laplacian of the electron density. G(a.u.) is the kinetic energy density, $G/\rho(a.u.)$ the ratio between kinetic energy density and electron density, V(a.u.) the potential energy density and E(a.u.)the total energy density in the bond critical point [4, 5].

Theoretical calculations

Figure S15: Short $N \cdots I$ contact in the aggregate in 2; Hirshfeld surface is shown for the TFDIB and DABCO moiety. The surface colours code the electrostatic potential (red negative, blue positive) [6].

Figure S16: $|\nabla \rho|$ from calculation; bond paths are shown as black lines, bond critical points as black solid circles, and ring critical points as green solid circles.[7] Fig. S16 shows a trajectory plot an isolated four molecular aggregate at the B3LYP level of theory.

Figure S17: Laplacian of the electron density obtained by calculation $(\nabla^2 \rho)$; contours are at $\pm 2^n \cdot 10^{-3}$ a.u. Positive values are in blue and negative values in red **2**.

References

- K. Meindl and J. Henn. Foundations of Residual-Density Analysis. Acta Crystallogr. 2008, A64, 404–418.
- [2] A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. Mallinson, T. Richter, and T. Koritsanszky. XD2016 - A Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors. 2016.
- [3] C. B. Hübschle and B. Dittrich. *MoleCoolQt* a molecule viewer for charge-density research. J. Appl. Crystallogr., 44:238–240, 2011.
- [4] Y. A. Abramov. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr., A53:264–272, 1997.
- [5] E. Espinosa, E. Molins, and C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. *Chem. Phys. Lett.*, 285:170–173, 1998.
- [6] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. *CrystalExplorer17* (Version 17.5). University of Western Australia, http://hirshfeldsurface.net, 2017.
- [7] T. A. Keith. AIMAll (Version 17.01.25). TK Gristmill Software, Overland Park KS, USA, 2017.

			-		1		
atom	P_v	κ	P_{00}	P_{11}	P_{1-1}	P_{10}	Net charge
I(1)	7.12(8)	1.049(4)	0	0.13(3)	0.00(3)	-0.07(2)	-0.12(8)
I(2)	7.15(8)	1.049(4)	0	0.01(3)	-0.01(3)	-0.02(3)	-0.15(8)
F(1)	7.19(3)	0.984(3)	0	-0.01(4)	-0.02(3)	-0.04(3)	-0.19(3)
F(2)	7.19(3)	0.984(3)	0	0.07(3)	0.02(3)	0.01(3)	-0.19(3)
F(3)	7.22(3)	0.984(3)	0	-0.02(3)	0.03(3)	-0.03(2)	-0.22(3)
F(4)	7.21(3)	0.984(3)	0	-0.10(3)	0.00(3)	-0.06(3)	-0.21(3)
N(1)	5.07(6)	0.993(5)	0	0.10(2)	-0.03(2)	-0.04(2)	-0.07(6)
N(2)	5.00(6)	0.993(5)	0	0.11(2)	-0.04(2)	-0.03(2)	0.00(6)
C(1)	4.23(10)	0.993(5)	0	-0.01(2)	0.03(2)	0.03(2)	-0.23(10)
C(2)	3.93(6)	1.002(6)	0	-0.03(2)	0.02(2)	-0.12(2)	+0.07(6)
C(11)	4.18(5)	0.987(5)	0	-0.01(2)	0.06(2)	0.04(2)	-0.18(5)
H(11A)	0.80(2)	1.2	0	0	0	0.11(2)	+0.20(2)

Table S4: Contraction parameters and Population coefficients

atom	P_{20}	P_{21}	P_{2-1}	P_{22}	P_{2-2}
I(1)	-0.45(3)	-0.06(3)	0.02(3)	-0.15(3)	0.07(3)
I(2)	-0.52(3)	0.09(3)	0.04(3)	-0.16(3)	-0.10(3)
F(1)	-0.12(3)	-0.05(3)	-0.14(3)	0.02(4)	0.05(4)
F(2)	-0.13(3)	-0.05(3)	-0.05(3)	0.01(3)	0.01(3)
F(3)	-0.07(3)	0.04(3)	-0.02(3)	-0.08(3)	-0.02(3)
F(4)	-0.05(3)	0.00(3)	-0.08(3)	0.00(3)	-0.06(3)
N(1)	0.00(2)	-0.03(2)	0.04(2)	0.00(2)	-0.06(2)
N(2)	-0.02(2)	0.00(2)	-0.01(2)	0.06(2)	-0.06(2)
$\ C(1) \ $	0.07(2)	0.05(2)	0.04(2)	-0.11(2)	-0.04(2)
$\ C(2) \ $	0.03(2)	-0.01(2)	0.03(2)	-0.17(2)	0.04(2)
$\ C(11) \ $	0.04(2)	0.02(2)	0.00(2)	-0.07(2)	-0.01(2)

atom	P_{30}	P_{31}	P_{3-1}	P_{32}	P_{3-2}	P_{33}	P_{3-3}
I(1)	0.05(3)	0.02(2)	0.02(2)	0.01(3)	0.00(2)	0.03(2)	-0.01(2)
I(2)	0.09(3)	-0.03(2)	0.05(2)	0.00(3)	0.04(2)	-0.04(2)	-0.03(2)
F(1)	0.00(2)	0.00(2)	-0.01(2)	0.06(2)	0.03(2)	-0.01(2)	-0.01(2)
F(2)	0.00(2)	-0.05(2)	0.02(2)	0.00(2)	0.00(2)	-0.02(2)	-0.01(2)
F(3)	0.01(2)	-0.03(2)	-0.02(2)	0.01(2)	0.01(2)	-0.02(2)	0.05(2)
F(4)	-0.03(2)	0.02(2)	-0.05(2)	0.03(2)	0.04(2)	-0.04(2)	0.02(2)
N(1)	0.18(2)	0.04(2)	0.00(2)	0.04(2)	-0.07(2)	0.04(2)	-0.12(2)
N(2)	0.19(2)	0.01(2)	0.01(2)	0.00(2)	-0.04(2)	-0.02(2)	-0.10(2)
C(1)	0.22(3)	0.03(2)	-0.01(2)	0.16(2)	0.00(2)	0.03(2)	0.02(2)
C(2)	0.33(2)	-0.02(2)	0.01(2)	0.12(2)	-0.04(3)	0.00(2)	0.01(2)
C(11)	0.29(2)	-0.03(2)	0.04(2)	-0.04(2)	-0.01(2)	0.01(2)	-0.23(2)

atom	P_{40}	P ₄₁	P_{4-1}	P_{42}	P_{4-2}	P_{43}	P_{4-3}	P_{44}	P_{4-4}
I(1)	0.11(3)	-0.10(3)	0.01(3)	0.20(3)	0.19(3)	0.00(3)	-0.09(3)	0.11(3)	0.18(3)
I(2)	0.06(3)	0.18(3)	0.04(3)	0.14(3)	-0.19(3)	0.02(3)	-0.11(3)	-0.03(3)	-0.18(3)
F(1)	-0.03(3)	0.04(3)	-0.03(3)	0.10(3)	-0.04(3)	0.04(3)	0.02(3)	-0.09(3)	0.04(3)
F(2)	0.00(3)	-0.06(3)	-0.09(3)	-0.02(3)	0.05(3)	-0.01(3)	-0.04(3)	0.01(3)	-0.01(3)
F(3)	-0.03(3)	-0.01(3)	-0.10(2)	0.00(3)	0.12(3)	0.06(3)	-0.02(3)	0.01(3)	-0.07(3)
F(4)	0.06(3)	0.04(3)	0.03(3)	0.01(3)	0.00(3)	-0.03(3)	0.03(3)	-0.02(3)	-0.06(3)
N(1)	-0.01(3)	-0.04(3)	0.01(3)	-0.01(3)	-0.05(3)	0.00(3)	-0.04(3)	-0.03(2)	-0.02(3)
N(2)	0.04(3)	-0.02(3)	0.01(3)	-0.01(3)	-0.01(3)	0.01(3)	0.03(3)	0.01(2)	0.11(3)
C(1)	0.08(3)	0.07(2)	0.09(3)	0.00(3)	0.01(4)	0.01(2)	0.09(2)	0.00(2)	0.06(2)
C(2)	0.10(2)	0.00(2)	0.06(2)	0.04(2)	0.06(3)	-0.03(2)	-0.02(2)	0.03(2)	-0.03(2)
C(11)	0.03(2)	-0.05(2)	-0.04(2)	-0.02(2)	0.02(2)	-0.04(2)	0.12(2)	-0.01(2)	0.00(2)