

Volume 75 (2019)

Supporting information for article:

Three new Zn^{II} coordination polymers constructed from a semirigid tricarboxylic acid: structural changes caused by flexibility and luminescence sensing for hexavalent chromate anions

Yanyan An, Liping Lu and Miaoli Zhu

Sensors based on CPs	Analyte	K _{sv}	LOD(µM)	Media	Reference
	$(CrO_4^{2-}/Cr_2O_7^{2-})$				
${[Cd(L)-(BPDC)]\cdot 2H_2O}_n$	$Cr_2O_7^{2-}$	6.4×10^{3}	37.6	H ₂ O	Chen et al.,2016
$\{[Cd(L)(SDBA)(H_2O)]\cdot 0.5H_2O\}_n$	$Cr_2O_7^{2-}$	4.9×10^{3}	48.6		
[Zn(BIPA)(tfbdc)] _n	$Cr_2O_7^{2-}$	1.98×10^4	0.069	DMF	Wang et al.,2018
${[Cd(BIPA)(tfbdc)(H_2O)] \cdot DMF}$	$Cr_2O_7^{2-}$	1.77×10^{4}	0.091		
n					
${[Zn_3(mtrb)_3(btc)_2] \cdot 3H_2O}_n$	$Cr_2O_7^{2-}$	4.62×10^{3}	2.83	H ₂ O	Zhang et al.,2018
	CrO ₄ ²⁻	2.77×10^{3}	4.52		
$[Cd_3(cpota)_2(phen)_3]_n \cdot 5nH_2O$	$Cr_2O_7^{2-}$	1.00×10^{4}	3.62	H ₂ O	Li et al., 2018
	CrO4 ²⁻	3.51×10 ³	8.06	2 -	
$[Zn(HL)(phen)(H_2O)] \cdot 2H_2O$	$Cr_2O_7^{2-}$	1.61×10^{4}	0.434	H ₂ O	This work
	CrO ₄ ²⁻	8.52×10^{3}	0.776		

Table S1 Comparison of various CPs sensors for the detection of Cr(VI).

Fig. S1 The IR spectra of H_3L ligand and CPs (I-III).

Fig. S2 PXRD patterns of CPs (I-III) at room temperature.

Fig. S3 The thermal curves of CPs (I-III).

Fig. S4 The solid-state emission spectra of H₃L, 1,10-Phen, 4,4'-bpy, and CPs (I-III) at room temperature.

Fig. S5 (a) The emission spectra of (II) in seven common different solvents; (b) The emission intensity of

(II) in different solvents.

Fig. S6 The PXRD patterns of simulated (**II**), the PXRD pattern of (**II**) immersed in water, and the PXRD patterns for the recognition of $Cr_2O_7^{2-}$ and CrO_4^{2-} after five recycling processes.

Fig. S7 Liquid UV-vis spectra of (\mathbf{II}) and different anions in the aqueous solution.