The solid state structure of the β-blocker metoprolol: a combined experimental and in silico investigation

Patrizia Rossi, ${ }^{\text {a }}$ Paola Paoli,,${ }^{\text {a* }}$ Laura Chelazzi, ${ }^{\text {b }}$ Luca Conti ${ }^{\mathrm{c}}$ and Andrea Bencini ${ }^{\mathrm{c}}$

${ }^{\text {a }}$ Dept. of Industrial Engineering, University of Florence, Via di S. Marta 3, I-50139 Florence, Italy, ${ }^{\text {b }}$ Centro di Cristallografia Strutturale, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino-FI, Italy, ${ }^{\text {b }}$ Dept. of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino-FI, Italy

Supplementary Material

Table S1: Signal attribution (Qiao et al., 2011) used for the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of metoprolol tartrate in $\mathrm{D}_{2} \mathrm{O}$ at pD 11.10.

ס 7.29 ppm, d (2H), 9-H, $9^{\prime}-\mathrm{H} ;$
$\delta 7.02 \mathrm{ppm}, \mathrm{d}(2 \mathrm{H}), 8-\mathrm{H}, 8-\mathrm{H}^{\prime} ;$
$\delta 4.36 \mathrm{ppm}, \mathrm{s}(2 \mathrm{H}), \mathrm{b}-\mathrm{H}, \mathrm{b}^{\prime}-\mathrm{H} ;$
$\delta 4.14 \mathrm{ppm}, \mathrm{m}(2 \mathrm{H}), 6(1)-\mathrm{CH}_{2}, 6(2)-\mathrm{CH}_{2}$;
$\delta 4.04 \mathrm{ppm}, \mathrm{m}(1 \mathrm{H}), 5-\mathrm{H} ;$
$\delta 3.74 \mathrm{ppm}, \mathrm{t}(2 \mathrm{H}), 12-\mathrm{CH}_{2}$;
$\delta 3.37 \mathrm{ppm}, \mathrm{s}(3 \mathrm{H}), 13-\mathrm{CH}_{3}$;
$\delta 2.88 \mathrm{ppm}, \mathrm{m}(4 \mathrm{H}), 4(1)-\mathrm{CH}_{2}, 4(2)-\mathrm{CH}_{2}, 11-\mathrm{CH}_{2}$;
$\delta 2.77$ ppm, m (1H), 3-H;
$\delta 1.11 \mathrm{ppm}, \mathrm{dd}(6 \mathrm{H}), 1-\mathrm{CH}_{3}, 2-\mathrm{CH}_{3}$;

Table S2: Intermolecular \mathbf{H}-bonds and contacts in compound $\mathbf{P R}{ }^{\text {a }} \mathbf{B E}^{\text {b }}$ and $\mathbf{A l}^{\mathbf{c}}$.

	Intermolecular H-bonds			
		D"A (Å)	H"A (Å)	$\mathrm{X}-\mathrm{H} \times \mathrm{A}\left({ }^{\circ}\right.$)
PR	$\mathrm{OH}^{*} \mathrm{~N}$	2.81	2.10	151
PR	$\mathrm{NH} \cdots \mathrm{O}$	3.17	2.44	146
BE	$\mathrm{OH} \cdots \mathrm{N}$	2.86	2.04	174
BE	NH"O	3.38	2.56	161
Al	$\mathrm{OH}^{*} \mathrm{~N}$	2.84	1.93	172
AI	NH"O	3.21	2.49	141
		Interm	ntacts	
		$X \cdots{ }^{\text {d }}$ (\AA)		
PR	$\pi-\pi$	3.755		
		$H^{\prime \prime} \mathrm{X}^{\mathrm{e}}$ (${ }^{\text {A }}$)		
BE	$\mathrm{CH}^{*} \pi$	3.176		

${ }^{\text {a }}$: refcode PROPRA10 in the Cambridge Structural Database
${ }^{\text {b }}$: refcode ROKNUB in the Cambridge Structural Database
${ }^{c}$: refcode KAZPOQ in the Cambridge Structural Database
${ }^{d}$: X is the centroid of the facing aromatic rings
${ }^{e}: X$ is the centroid of the aromatic ring involved in the contact

Table S3: Crystallographic data for $\mathbf{P R}^{\text {a }} \mathbf{B E}^{\text {b }}$ and $\mathbf{A l}{ }^{\text {c }}$.

	PR	BE	AI
Crystal system, space group	Monoclinic, $\mathrm{P}_{2} /$ /c	P-1	P-1
Unit cell dimensions ($\mathrm{A}^{\circ}{ }^{\circ}$)	$\begin{gathered} a=11.7599(18) \\ b=4.8068(6) \\ c=26.5086(27) \\ \beta=99.89(2) \end{gathered}$	$\begin{gathered} a=4.9799(11) \\ b=10.010(2) \\ c=19.123(3) \\ \alpha=103.022(17) \\ \beta=91.29(3) \\ \gamma=102.079(16) \end{gathered}$	$\begin{gathered} a=5.4490(4) \\ b=8.0200(4) \\ c=16.2340(5) \\ \alpha=95.2510(10) \\ \beta=96.5730(10) \\ \gamma=94.9120(10) \end{gathered}$
$\mathrm{Z}, \mathrm{D}_{\mathrm{c}}\left(\mathrm{mg} / \mathrm{cm}^{3}\right)$	1.17	1.127	1.18
$K P 1^{\text {d }}$	0.69	0.65	0.66

${ }^{\text {a }}$: refcode PROPRA10 in the Cambridge Structural Database
${ }^{\text {b }}$: refcode ROKNUB in the Cambridge Structural Database
${ }^{c}$: refcode KAZPOQ in the Cambridge Structural Database
${ }^{d}$: calculated by using PLATON, A Multipurpose Crystallographic Tool; Spek, A.L., Utrecht University: Utrecht, The Netherlands, 1998.

Table S4. Cell parameters and Volume for BE at different temperature from single crystal diffraction data.

$\mathrm{T}(\mathrm{K})$	$\mathrm{a}(\AA)$	$\mathrm{b}(\AA)$	$\mathrm{c}(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$\mathrm{V}\left(\AA^{3}\right)$
100	$4.9388(5)$	$9.802(1)$	$18.915(2)$	$102.924(9)$	$93.016(1)$	$101.903(9)$	$868.6(1)$
130	$4.9406(7)$	$9.818(1)$	$18.935(2)$	$102.81(1)$	$92.76(1)$	$101.92(1)$	$872.1(2)$
170	$4.9462(8)$	$9.844(1)$	$18.976(3)$	$102.75(1)$	$92.23(1)$	$101.95(1)$	$878.2(1)$
210	$4.9539(8)$	$9.884(1)$	$19.015(2)$	$102.79(1)$	$92.01(1)$	$102.00(1)$	$884.9(2)$
230	$4.9571(9)$	$9.910(2)$	$18.999(5)$	$102.69(2)$	$91.85(2)$	$101.95(2)$	$887.7(3)$
260	$4.9648(7)$	$9.943(2)$	$19.059(3)$	$102.93(1)$	$91.63(1)$	$102.00(1)$	$894.1(3)$
300	$4.9692(9)$	$10.000(1)$	$19.122(3)$	$103.01(1)$	$91.22(1)$	$102.00(1)$	$903.3(3)$

Table S5. Linear (α) and volume (β) thermal expansion coefficients (TECs) calculated for $\mathbf{B E}$ taking as reference the cell parameter values calculated at 100K.

$\mathrm{T}(\mathrm{K})$	$\alpha \mathrm{a}\left(10^{-5}\right) \mathrm{C}^{-1}$	$\alpha \mathrm{~b}\left(10^{-5}\right) \mathrm{c}^{-1}$	$\alpha \mathrm{c}\left(10^{-5}\right) \mathrm{c}^{-1}$	$\beta\left(10^{-4}\right) \mathrm{C}^{-1}$
100 K				
130	1.2	5.4	3.5	1.3
170	2.1	6.1	4.6	1.6
210	2.8	7.6	4.8	1.7
230	2.8	8.5	3.4	1.7
260	3.3	9.0	4.8	1.8
300	3.1	10.1	5.5	2.0

Figure S1: $a)^{1} \mathrm{H}-\mathrm{NMR}$ analysis of Metoprolol tartrate in $\mathrm{D}_{2} \mathrm{O}$ a pD 11.10 before and after treatment with anion exchange resin. b) Magnification of the aliphatic region of the above reported spectra.

Dihedral angles $\left(\tau_{1-} \tau_{4}\right)$ distribution during MD simulations at 100 K in vacuum.

$\tau_{1}-\tau_{2}$, starting conformation: all trans

$\tau_{1} \tau_{2}$, starting conformation: tttg $^{+}$

$\tau_{3}-\tau_{4}$, starting conformation: all trans

$\tau_{3-} \tau_{4}$, starting conformation: tttg $^{+}$

$\tau_{1} \cdot \tau_{2}$, starting conformation: tt $g^{+} g^{+}$

$\tau_{3}-\tau_{4}$, starting conformation: $\mathrm{tt} \mathrm{g}^{+} g^{+}$

$\tau_{3} \tau_{4}$, starting conformation: tt g^{-t}

Dihedral angles $\left(\tau_{1}-\tau_{4}\right)$ distribution during MD simulations at 100 K in simulated solvent.

$\tau_{1}-\tau_{2}$, starting conformation: all trans

$\tau_{1}-\tau_{2}$, starting conformation: tttg $^{+}$

$\tau_{3} \tau_{4}$, starting conformation: all trans

$\tau_{3} \tau_{4}$, starting conformation: tttg $^{+}$

$\tau_{1}-\tau_{2}$, starting conformation: $t t g^{+} g^{+}$
τ_{2}

13
$\tau_{1} \tau_{2}$, starting conformation: $t t g^{-t} t$

$\tau_{3}-\tau_{4}$, starting conformation: $t t g^{+} g^{+}$
$\tau_{3}-\tau_{4}$, starting conformation: tt g ${ }^{-} t$

Figure S10: The intra-chain $\mathrm{R} 2,2(10)$ motifs in $\mathbf{M B}$ (atoms defining each ring are highlighted)

Figure S11: Intermolecular potentials calculated by using the UNI force field (line width set by interaction strength): MB (top), IA (bottom).

Figure S12: Intermolecular potentials calculated by using the UNI force field (line width set by interaction strength): PR (top), BE (bottom).

Figure S13: Fingerprint plots for MB (up left), IA (up right) PR (bottom left) and BE (bottom right).

Figure S14: Fingerprint plots for MB, IA PR and BE broken down into contributions from $\mathrm{N} \cdots \mathrm{H}$ and $\mathrm{C} \cdots \mathrm{C}$ close contacts (the grey shadow is an outline of the complete fingerprint plot).

Figure S15: Fingerprint plots for MB, IA PR and BE broken down into contributions from $\mathrm{C} \cdot \mathrm{H}$ and $\mathrm{O} \cdots \mathrm{H}$ close contacts (the grey shadow is an outline of the complete fingerprint plot).

Figure S16: Experimental (130K), calculated (150K) and difference diffraction patterns of MB.
${ }^{\wedge}$ exo

Figure S17: DSC curve of MB in the 298-343 K range.

Figure S18: Superimposition of XRPD patterns of MB collected in the 130-300 K range.

