

Volume 74 (2018)

Supporting information for article:

Two single-enantiomer amidophosphoesters: a database study on the chirality of (O)2P(O)(N)-based structures

Fahimeh Sabbaghi, Mehrdad Pourayoubi, Marek Nečas and Krishnan Damodaran

Figure S1. Populations of space groups in (O)₂P(O)(N)-based structures.

Figure S2. The chemical structures associated to the refcodes for typical compounds with a singleenantiomer $NHCH(CH_3)(C_6H_5)$ segment.

Figure S3. The chemical structures associated to the refcodes for compounds with chiral segments discussed in the subset "(b)". Typical examples of non-centrosymmetric cyclic hydrogen-bond motifs in this subset are $R_4^4(16)$ between one amidophosphoester molecule and one H₂O molecule (KUSCIM), $R_3^3(11)$ (ZARNAK), an $R_2^2(8)$ hetero-synthon including different conjunctions NH...O and NH...N (MIYXAV), a novel $R_2^2(10)$ including a C₂ axis (TAFHIR) instead of inversion element which usually found for such homo-synthon.

Figure S4. The chemical structure of CIYVOW, including a chiral aromatic diol. For the structures with refcodes MIWNUB and RITZEA, refer to Figures S2 and S3, respectively.

CIHDED	$\begin{array}{c} 0 \\ Ph \\ H \\ 0 \\ H \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	OWUYEL	SP=0 SP=0 N-S Pr ⁱ -S
JOFPUP	Me Ph Me N R O O Ph	OWUYIP	RP O Pr ⁱ S
JOFRAX	Me Ph Me N S O O Ph	PALPHS	Ph P

Figure S5. The chemical structures of compounds with a dissymmetry P atom; also see MAQPID in Figure S2.

Figure S6. The chemical structures associated to the refcodes of typical chiral structures obtained from achiral molecules.

Figure S7. The ${}^{31}P{}^{1}H$ NMR spectrum of $(C_6H_5O)_2P(O)[NH-R-(+)CH(CH_3)(C_6H_5)]$ in DMSO- d_6 .

Figure S8. The ¹H NMR spectrum of $(C_6H_5O)_2P(O)[NH-R-(+)CH(CH_3)(C_6H_5)]$ in DMSO-*d*₆.

Figure S9. The UV spectra of $(C_6H_5O)_2P(O)[NH-R-(+)CH(CH_3)(C_6H_5)]$ (blue) and $(C_6H_5O)_2P(O)[NH-S-(-)CH(CH_3)(C_6H_5)]$ (red) in CH₃CN.

Figure S10. CD spectra of (I) (blue) and (II) (red) in CHCl₃ solution.