

Volume 74 (2018)

Supporting information for article:

Polymorphism in some new bis-hydrazone compounds

Bhavna Dwivedi and Dinabandhu Das

EXPERIMENTAL SECTION:

Synthesis of Compounds 1, 2, 3 and 4:

Synthetic scheme for compounds are shown in Scheme S1.

Molecular structures of 1, 2, 3 and 4 were confirmed by ¹H NMR spectroscopy.

Compound 1:

¹H NMR (500 MHz, CDCl₃): δ 7.20 -7.67 (d, 4H), 7.18-7.19 (d, 4H), 7.05-7.10 (m, 8H), 2.18 (s, 6H).

Melting point: 160-163° C

Compound 2:

¹H NMR (500 MHz, CDCl₃): δ7.60-7.61 (d, 4H), 7.35-7.38 (d, 4H), 7.12–7.26 (m, 8H), 2.18 (s, 6H).

Melting point: 190-192° C

Compound **3**:

```
<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ7.05-7.08 (d, 4H), δ7.11-7.18 (m, 8H), δ7.53-7.68 (m, 4H), δ2.41-2.43 (d,
```

12H), $\delta 2.01(s, 6H)$.

Melting point: 170-175° C

Compound 4:

¹H NMR (500 MHz, CDCl₃): δ7.49-7.65 (m, 4H), δ7.07-7.19 (m, 4H), δ6.62-6.71 (m, 8H), δ3.07-3.08 (d, 24H), δ2.12(s, 6H).

Melting point: 235-240° C

Crystallization:

The compounds were crystallized by slow evaporation method in different solvents at room temperature. Solvents used for crystallization are shown in Table S1, S2, S3 and S4 for compound 1, 2, 3 and 4 respectively.

Solvent used for crystallization of 1	Crystalline form obtained
CH ₃ CN	1a
DCM	1b
1,4-Dioxane	1c
Acetone	1a and 1c concomitantly
CHCl ₃	1b
Tertiary butanol	1a
Isopropyl alcohol	1a
Ethanol	1a
Sublimed crystal	1c

Table S1 Solvents used for crystallization of compound 1 and composition of crystals produced

Fable S2 Solvents used for crystallization o	f compound 2 and	composition of	crystals produced
---	-------------------------	----------------	-------------------

Solvent used for crystallization of 2	Crystalline form obtained
CH ₃ CN	2a
DMSO	2a and 2b concomitantly
DCM	2a
CHCl ₃	2a
1,4-Dioxane	2a
Tertiary butanol	2a
Isopropyl alcohol	2a
Ethanol	2a
Acetone	2a

Table S3 List of solvents used for the synthesis of polymorphs of compound 3.

Solvent used for crystallization of 3	Polymorph obtained
Carbontetrachloride	3a
Ethylacetate	3a
Acetone	3a
Diethyl ether	3a
Dimethyl Sulfoxide	3a & 3bconcomitantly
Dimethylformamide	3a
Water	3a
Nitromethane	3a
n-Hexane	3a
Methanol	3a
Ethanol	3a
Isopropanol	3a
n-Propanol	3a
t-Butanol	3a
Acetonitrile	3a
n-Butanol	3a
Dimethylacetamide	3a
Tetrahydrofuran	3a
Furan	3a
1, 4-Dioxane	3a & 3b concomitantly
Cyclohexanone	3a
Cyclohexane	3a

Benzene	3a
Pyridine	3a
Toluene	3a
Fluorobenzene	3a
Anisole	3a
Nitrobenzene	3a & 3b concomitantly
<i>m</i> -Xylene	3a
Aniline	3a
Morpholine	3a
Piperidine	3a
Pyrrolidine	3a
<i>m</i> -Nitrotoluene	3a
Hexafluorobenzene	3a
Mesitylene	3a

Table S4 List of solvents used for the synthesis of polymorphs of compound 4.

Solvent used for crystallization of 2	Polymorph obtained
CH ₃ CN	4a
EtOAc	4a
Mesitylene	4b

Thermal ellipsoid plots

Figure S3 Thermal ellipsoid plot of the asymmetric unit of 1a. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S4 Thermal ellipsoid plot of the asymmetric unit of **1b**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S5 Thermal ellipsoid plot of the asymmetric unit of **1c**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S6 Thermal ellipsoid plot of the asymmetric unit of **2a**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S7 Thermal ellipsoid plot of the asymmetric unit of **2b**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S8 Thermal ellipsoid plot of the asymmetric unit of **3a**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S9 Thermal ellipsoid plot of the asymmetric unit of **3b**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S10 Thermal ellipsoid plot of the asymmetric unit of **4a**. Atoms are shown with 50% probability of thermal ellipsoids.

Figure S11 Thermal ellipsoid plot of the asymmetric unit of **4b**. Atoms are shown with 50% probability of thermal ellipsoids.

Hirshfeld surface analysis

Quantitative analysis of intermolecular interactions has been carried out using Crystal Explorer 3.1 program (Wolff *et al.*, 2012). Crystallographic information file (CIF) was used as input for the analysis. Details of Hirshfeld surface analysis and Finger print plots are shown in Fig. S15-S16.

Figure S16 Graphical representation of relative contribution various inter-molecular interactions.

Finger print plot

Figure S17 finger print plot of all the polymorphs.