

STRUCTURAL CHEMISTRY

Volume 74 (2018)

Supporting information for article:

Two new POM-based compounds modified by lanthanide-Schiff base complexes with interesting NLO properties

Xi-Ming Luo, Chen-Hui Cui, Jia-Peng Cao, Qing-Fang Lin and Yan Xu

Two new POMs-based compounds modified by lanthanide Schiff base complexes with interesting NLO properties

S1. The third-order nonlinear optics

The electronic spectra of compounds $\mathbf{1 - 2}$ in DMF at a concentration of $1.0 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ give the nonliner absorption at room temperature. Two-photon absorption (TPA) values containing TPA coefficient β and TPA cross section σ were measured by the open-aperture Z-scan technique with femtosecond laser pulse and Ti:95 sapphire system. Figures 5 and 6 show the open aperture Z-scan curves of compound 1-2. The black dots are the experimental data, and the red lines represent the theoretical simulated curves modified by the following equations (eqn (1) and (2)):
$T(z, s=1)=\sum_{m=0}^{\infty} \frac{\left[-q_{0}(z)\right]^{m}}{(m+1)^{3 / 2}} \quad$ for $\left|q_{0}\right|<1$
$q_{0}(z)=\frac{\beta I_{0} L_{e f f}}{1+z^{2} / z_{0}{ }^{2}}$
where β is the TPA coefficient of the solution, I_{0} is the input intensity of laser beam at the focus $z=0$, $L_{\text {eff }}=\left(1-e^{-\alpha L}\right) / \alpha$ is the effective length with α and L are the linear absorption coefficient and the sample length respectively. Z is the sample position, $z_{0}=\pi \omega_{0}{ }^{2} / \lambda$ is the diffraction length of the beam, in which the ω_{0} and λ are the spot size at the focus and the wavelength of the beam respectively. Furthermore, the molecular TPA cross section σ can be calculated by the following relationship:
$\sigma N_{A} d \times 10^{-3}=h v \beta$
where N_{A}, d, h and v are respectively the Avogadro's constant, the concentration of the compound, the Planck's constant and the frequency of input intensity.

Table S1 The third-order NLO data of complexes 1-2.

Compounds	$\beta^{\mathrm{a}}\left(\mathrm{cm} \cdot \mathrm{GM}^{-1}\right)$	$\mathrm{\sigma}^{\mathrm{b}}\left(\mathrm{GM}^{\mathrm{c}}\right)$	$\lambda(\mathrm{nm})$
$\mathbf{1}$	0.05352	2264	700
$\mathbf{2}$	0.30330	941	820

[^0]${ }^{c} 1 \mathrm{GM}=10^{-50} \mathrm{~cm}^{4}$ s per photon.

S2. Characterization

Figure S1 The TGA curve for $\mathbf{1}$ and $\mathbf{2}$.

Figure S2 The TGA curve for 1.

Figure S3 The TGA curve for 2.

Figure S4 The IR spectrum of $\mathbf{1}$.

Figure S5 The IR spectrum of 2.

Figure S6 PXRD patterns of $\mathbf{1}$ (in ascending order): simulated, experimental, one year later in the sample vial under ambient conditions, and kept for 24 h in the constant temperature $\left(100^{\circ} \mathrm{C}\right)$ of oven.

Figure S7 PXRD patterns of $\mathbf{2}$ (in ascending order): simulated, experimental, one year later in the sample vial under ambient conditions, and kept for 24 h in the constant temperature ($100^{\circ} \mathrm{C}$) of oven.

S3. Electrochemical properties

Table S2 The mean peak potentials $\mathrm{E}_{1 / 2}$ of 1-CPE, 2-CPE and 3-CPE.

CPE	The mean peak potentials $\mathrm{E}_{1 / 2}\left(\mathrm{mV}, 200 \mathrm{mV} \mathrm{s}^{-1}\right)$			
	$\mathrm{I}-\mathrm{I}^{\prime}$	III-II' III	IV-IV'	
1-CPE	440	257	41	-134
2-CPE	446	253	55	-120
3-CPE	414	281	43	-122

[^0]: ${ }^{\text {a }}$ the TPA absorption coefficient of the solution.
 ${ }^{\mathrm{b}}$ the molecular TPA cross-section.

