

Volume 74 (2018)

Supporting information for article:

Two new POM-based compounds modified by lanthanide–Schiff base complexes with interesting NLO properties

Xi-Ming Luo, Chen-Hui Cui, Jia-Peng Cao, Qing-Fang Lin and Yan Xu

Two new POMs-based compounds modified by lanthanide Schiff base complexes with interesting NLO properties

S1. The third-order nonlinear optics

The electronic spectra of compounds **1** - **2** in DMF at a concentration of 1.0×10^{-4} mol·L⁻¹ give the nonliner absorption at room temperature. Two-photon absorption (TPA) values containing TPA coefficient β and TPA cross section σ were measured by the open-aperture Z-scan technique with femtosecond laser pulse and Ti:95 sapphire system. Figures 5 and 6 show the open aperture Z-scan curves of compound **1-2**. The black dots are the experimental data, and the red lines represent the theoretical simulated curves modified by the following equations (eqn (1) and (2)):

$$T(z, s = 1) = \sum_{m=0}^{\infty} \frac{[-q_0(z)]^m}{(m+1)^{3/2}} \quad \text{for } |q_0| < 1$$

$$q_0(z) = \frac{\beta I_0 L_{eff}}{1 + z^2 / z_0^{-2}}$$
(2)

where β is the TPA coefficient of the solution, I_0 is the input intensity of laser beam at the focus z = 0, $L_{eff} = (1 - e^{-\alpha L})/\alpha$ is the effective length with α and L are the linear absorption coefficient and the sample length respectively. Z is the sample position, $z_0 = \pi \omega_0^2 / \lambda$ is the diffraction length of the beam, in which the ω_0 and λ are the spot size at the focus and the wavelength of the beam respectively. Furthermore, the molecular TPA cross section σ can be calculated by the following relationship:

$$\sigma N_A d \times 10^{-3} = h \nu \beta \tag{3}$$

where N_A , *d*, *h* and *v* are respectively the Avogadro's constant, the concentration of the compound, the Planck's constant and the frequency of input intensity.

Table S1	The third-order NLO data of complexes 1 – 2.
----------	--

Compounds	β ^a (cm⋅GM⁻¹)	σ ^b (GM ^c)	λ (nm)
1	0.05352	2264	700
2	0.30330	941	820

^a the TPA absorption coefficient of the solution.

^b the molecular TPA cross-section.

^c1 GM = 10^{-50} cm⁴s per photon.

S2. Characterization

Figure S1 The TGA curve for 1 and 2.

Figure S2 The TGA curve for 1.

Figure S3 The TGA curve for 2.

Figure S4 The IR spectrum of 1.

Figure S5 The IR spectrum of 2.

Figure S6 PXRD patterns of **1** (in ascending order): simulated, experimental, one year later in the sample vial under ambient conditions, and kept for 24 h in the constant temperature (100 °C) of oven.

Figure S7 PXRD patterns of **2** (in ascending order): simulated, experimental, one year later in the sample vial under ambient conditions, and kept for 24 h in the constant temperature (100 °C) of oven.

S3. Electrochemical properties

CPE	The mean peak potentials $E_{1/2}$ (mV, 200 mV s ⁻¹)			
CPE	- '	- '	- '	IV-IV'
1-CPE	440	257	41	-134
2-CPE	446	253	55	-120
3-CPE	414	281	43	-122

Table S2The mean peak potentials E1/2 of 1-CPE, 2-CPE and 3-CPE.