

Volume 74 (2018)

Supporting information for article:

Theoretical insight into the disordered structure of (*Z*)-2-[(*E*)-(4-methoxybenzylidene)hydrazinylidene]-

1,2-diphenylethanone: the role of noncovalent interactions

Xue-Jie Tan, Di Wang, Xu-Gang Lei and Jun-Peng Chen

Theoretical insight into the disordered structure of (Z)-2-((E)-(4-methoxybenzylidene)hydrazono)-1,2-diphenylethanone : the role of non-covalent interactions

Xue-Jie Tan^a* Di Wang^a, Xu-Gang Lei^a, Jun-Peng Chen^a

^a School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250353, P. R. China.

Supporting Information

^{*} Corresponding author. Tel.: +86 531 89631208; fax: +86 531 89631207; E-mail addresses: tanxuejie@163.com.

bonds ⁱ	bond lengths ⁱ	bonds ⁱⁱ	bond lengths ⁱⁱ	bonds ⁱⁱⁱ	bond lengths ⁱⁱⁱ	ΔB^{iv}	ΔB ^v	ΔB^{vi}
C1A—C2A	1.367(12)	C1B—C2B	1.375(11)	C1—C2	1.360(2)	0.008	0.007	0.015
C1A—C6A	1.368(6)	C1B—C6B	1.354(11)	C1—C6	1.398(2)	0.014	0.030	0.044
C2A—C3A	1.418(10)	C2B—C3B	1.412(7)	C2—C3	1.391(2)	0.006	0.027	0.021
C3A—01A	1.385(6)	C3B—O1B	1.349(6)	C3—01	1.3589(18)	0.036	0.0261	0.0099
C3A—C4A	1.357(5)	C3B—C4B	1.395(5)	C3—C4	1.372(2)	0.038	0.015	0.023
C4A—C5A	1.384(5)	C4B—C5B	1.378(5)	C4—C5	1.385(2)	0.006	0.001	0.007

Table S1 Comparison of bond lengths between three conformers in the crystal structures of o-MHDE and d-MHDE (Å)

C5A—C6A	1.379(7)	C5B—C6B	1.370(5)	C5—C6	1.388(2)	0.009	0.009	0.018
C6A—C7A	1.580(7)	C6B—C7B	1.592(7)	С6—С7	1.453(2)	0.012	0.127	0.139
C7A—N1A	1.272(9)	C7B—N1B	1.219(7)	C7—N1	1.2635(19)	0.053	0.0085	0.0445
C8A—N2A	1.306(5)	C8B—N2B	1.219(6)	C8—N2	1.2865(17)	0.087	0.0195	0.0675
C8A—C9A	1.445(6)	C8B—C9B	1.563(7)	C8—C9	1.4751(19)	0.118	0.0301	0.0879
C8A—C15A	1.534(5)	C8B—C15B	1.500(3)	C8—C15	1.5245(18)	0.034	0.0095	0.0245
C9A—C14A	1.375(4)	C9B—C14B	1.387(6)	C9—C14	1.386(2)	0.012	0.011	0.001
C9A—C10A	1.374(12)	C9B—C10B	1.399(7)	C9—C10	1.393(2)	0.025	0.019	0.006
C10A—C11A	1.386(12)	C10B—C11B	1.394(13)	C10—C11	1.385(2)	0.008	0.001	0.009
C11A—C12A	1.394(5)	C11B—C12B	1.378(13)	C11—C12	1.375(2)	0.016	0.019	0.003
C12A—C13A	1.364(4)	C12B—C13B	1.383(5)	C12—C13	1.365(3)	0.019	0.001	0.018
C13A—C14A	1.381(5)	C13B—C14B	1.376(5)	C13—C14	1.381(2)	0.005	0.000	0.005
C15A—O2A	1.213(2)	C15B—O2B	1.208(3)	C15—O2	1.2156(15)	0.005	0.0026	0.0076
C15A—C16A	1.482(3)	C15B—C16B	1.478(3)	C15—C16	1.4794(19)	0.004	0.0026	0.0014
C16A—C17A	1.390(3)	C16B—C17B	1.398(3)	C16—C17	1.3850(18)	0.008	0.005	0.013
C16A—C21A	1.406(3)	C16B—C21B	1.357(3)	C16—C21	1.3911(19)	0.049	0.0149	0.0341
C17A—C18A	1.376(4)	C17B—C18B	1.314(4)	C17—C18	1.381(2)	0.062	0.005	0.067

C18A—C19A	1.368(4)	C18B—C19B	1.410(5)	C18—C19	1.368(3)	0.042	0.000	0.042
C19A—C20A	1.339(4)	C19B—C20B	1.409(4)	C19—C20	1.371(3)	0.070	0.032	0.038
C20A—C21A	1.407(4)	C20B—C21B	1.407(3)	C20—C21	1.380(3)	0.000	0.027	0.027
C22A—O1A	1.462(7)	C22B—O1B	1.400(4)	C22—O1	1.419(3)	0.062	0.043	0.019
N1A—N2A	1.363(8)	N1B—N2B	1.411(4)	N1—N2	1.4092(16)	0.048	0.0462	0.0018

ⁱ: bonds in part A of d-MHDE.

ⁱⁱ: bonds in part B of d-**MHDE**.

ⁱⁱⁱ: bonds in o-**MHDE**.

^{iv}: absolute values of bond length differences between parts A and B of d-**MHDE**.

^v: absolute values of bond length differences between part A of d-**MHDE** and o-**MHDE**.

^{vi}: absolute values of bond length differences between part B of d-**MHDE** and o-**MHDE**.

bonds ⁱ	bond angles ⁱ	bonds ⁱⁱ	bond angles ⁱⁱ	bonds ⁱⁱⁱ	bond angles ⁱⁱⁱ	ΔA^{iv}	ΔA ^v	$\Delta A^{ vi}$
C2A—C1A—	112 2(6)	C6B—C1B—	122.0(6)	C2 C1 C6	120 25(15)	9.80	9 15	1.65
C6A	112.2(0)	C2B	122.0(0)	C2-C1-C0	120.33(13)		8.15	
C1A—C2A—	121 ((0))	C1B—C2B—	117 7(5)	C1 C2 C2	120 (0/16)	2.00	0.01	2.00
C3A	121.0(9)	C3B	117.7(5)	CIC2C3	120.69(16)	3.90	0.91	2.99
C4A—C3A—	107 ((4)	01B—	124 2(5)	01 62 64	124.09(15)	2.40	2.62	0.78
O1A	127.0(4)	C3B—C4B	124.2(5)	01-03-04	124.96(13)	5.40	2.02	0.78
01A—	109 4(6)	01B—	115 0(4)	01 62 62	114 02(15)	7.50	6.52	0.08
C3A—C2A	108.4(0)	C3B—C2B	115.9(4)	01	114.92(13)	7.30	0.32	0.98
C4A—C3A—	122.0(()	C4B—C3B—	110.0(4)	64 62 62	120 10(15)	4.00		0.20
C2A	123.9(6)	C2B	119.9(4)	C4—C3—C2	120.10(15)	4.00	3.80	
C3A—C4A—	112.9(5)	C5B—C4B—	110 7(4)	C2 C4 C5	119.14(15)	4.90	5 24	0.44
C5A	113.8(3)	C3B	118.7(4)	C3—C4—C5			5.34	0.44

Table S2 Comparison of bond angles between three conformers in the crystal structures of o-MHDE and d-MHDE (°)

C6A—C5A—	120.8(4)	C6B—C5B—	121 5(4)	C4 C5 C6	121 40(15)	0.70	0.60	0.10
C4A	120.8(4)	C4B	121.5(4)	64 65 60	121.40(13)	0.70	0.00	0.10
C1A—C6A—	126 6(5)	C1B—C6B—	110 2(5)	C5 C6 C1	119 21(14)	7.40	° 20	0.80
C5A	120.0(5)	C5B	119.2(3)	0-0-01	118.31(14)	7.40	6.29	0.89
C1A—C6A—	120 5(5)	C1B—C6B—	102 2(5)	C1 C6 C7	121 02(12)	2.80	0.52	2.27
C7A	120.3(3)	C7B	125.5(5)	CI-CO-C7	121.05(15)	2.80	0.33	2.21
C5A—C6A—	112.0(4)	C5B—C6B—	117 2(4)	C5 C6 C7	120 64(12)	4 40	7 74	2.24
C7A	112.9(4)	C7B	117.3(4)	CJ—CJ—C/	120.04(13)	4.40	7.74	5.54
N1A—	119 1(5)	N1B—	112.0(4)	N1 C7 C6	101 59(12)	5 20	2 49	0 60
С7А—С6А	118.1(3)	C7B—C6B	112.9(4)	NI	121.38(13)	5.20	5.48	8.08
N2A—	121.0(4)	N2B—	101 5(2)	N2 C8 C0	120.04(12)	0.40	0.06	0.56
C8A—C9A	121.9(4)	C8B—C9B	121.5(5)	N2	120.94(12)	0.40	0.96	0.56
N2A—	100.9(4)	N2B—	118.0(2)	N2—C8—	120 14/12)	1.00	0.66	1.04
N2A— C8A—C15A	120.8(4)	N2B— C8B—C15B	118.9(3)	N2—C8— C15	120.14(12)	1.90	0.66	1.24
N2A— C8A—C15A C9A—C8A—	120.8(4)	N2B— C8B—C15B C15B—	118.9(3)	N2—C8— C15 C9—C8—	120.14(12)	1.90	0.66	1.24

C10A—	112 1(6)	C14B—	102 4(6)	C14—C9—	119 25(15)	10.20	5 25	5.05
C9A—C14A	113.1(6)	C9B—C10B	125.4(0)	C10	118.35(15)	10.30	5.25	5.05
C14A—	124 1(2)	C14B—	117.0(4)	C14—C9—	120 82(12)	7.10	2 28	2 92
C9A—C8A	124.1(3)	C9B—C8B	117.0(4)	C8	120.82(13)	7.10	3.28	3.82
C10A—	122 3(6)	C10B—	118 3(4)	C10—C9—	120 84(14)	4.00	1 46	2.54
C9A—C8A	122.5(0)	C9B—C8B	118.5(4)	C8	120.84(14)	4.00	1.40	2.34
C9A—	127 1(10)	C11B—	116.9(6)	C11—C10—	120.08(18)	10.20	7.02	2 18
C10A—C11A	127.1(10)	C10B—C9B	116.9(6)	C9	120.00(10)	10.20	1.02	5.16
C10A—	112 2(6)	C12B—	120.7(0)	C12—C11—	120 27(10)	7.50	7 17	0.22
C11A—C12A	113.2(0)	C11B—C10B	120.7(9)	C10	120.37(19)	7.50	7.17	0.55
C13A—	122 4(2)	C11B—	120.0(6)	C13—C12—	120 11/18)	2.40	2 20	0.11
C12A—C11A	122.4(3)	C12B—C13B	120.0(0)	C11	120.11(10)	2.40	2.27	0.11
C12A—	117 0(3)	C14B—	121 4(5)	C12—C13—	120.02(10)	3 50	2 12	1 38
C13A—C14A	117.9(3)	C13B—C12B	121.4(<i>J</i>)	C14	120.02(19)	5.50	2.12	1.30
C9A—	124 1(3)	C13B—	117.0(5)	C13—C14—	121.07(18)	7 10	3 03	4.07
C14A—C13A	124.1(3)	C14B—C9B	117.0(3)	C9	121.07(18)	7.10	3.03	4.07

02A—		O2B—		O2—C15—				
C15A—C16A	122.41(19)	C15B—C16B	123.76(19)	C16	122.56(12)	1.35	0.15	1.20
02A—	110.7(2)	O2B—	110 22(10)	02—C15—	118 01(12)		1.69	1.21
C15A—C8A	119.7(2)	C15B—C8B	119.22(19)	C8	118.01(12)	0.48		
C16A—	117 70(10)	C16B—	117.02(17)	C16—C15—	110 20(11)	0.77	1.60	2 27
C15A—C8A	117.79(19)	C15B—C8B	117.02(17)	C8	119.39(11)	0.77		2.37
C17A—	110 68(10)	C21B—	118 71(10)	C17—C16—	118 04(14)	0.97	0.74	0.23
C16A—C21A	119.68(19)	C16B—C17B	110./1(19)	C21	118.94(14)	0.97	0.74	0.20
C17A—	120.08(17)	C17B—	110 00/10)	C17—C16—	121 70(12)	1 20	1.62	2 82
C16A—C15A	120.00(17)	C16B—C15B	110.00(10)	C15	121.70(12)	1.20	1.02	2.02
C21A—	120 24(16)	C21B—	122 35(18)	C21—C16—	110 36(13)	2 11	0.99	2 00
C16A—C15A	120.24(10)	C16B—C15B	122.33(18)	C15	119.30(13)	2.11	0.88	2.99
C18A—	121 6(2)	C18B—	120.0(2)	C18—C17—	120 45(15)	0.70	1 15	0.45
C17A—C16A	121.0(2)	C17B—C16B	120.9(2)	C16	120.45(15)	0.70	1.15	0.45
C19A—	116 8(3)	C17B—	122 3(3)	C19—C18—	120.02(18)	5.50	3.22	2.28
C18A—C17A	110.0(3)	C18B—C19B	122.3(3)	C17	120.02(10)			2.28

C20A—	104 ((2))	C20B—	110 1/2)	C18—C19—	120 24(19)	< 50	1.26	2.14
C19A—C18A	124.6(3)	C19B—C18B	118.1(3)	C20	120.24(18)	6.50	4.36	2.14
C19A—	110.2(2)	C21B—	117 ((2)	C19—C20—	120 40(19)	1.70	1.10	2.80
C20A—C21A	119.3(3)	C20B—C19B	117.0(2)	C21	120.40(18)	1.70	1.10	2.80
C16A—	117.0(2)	C16B—	122 2(2)	C20—C21—	110.01/16)	4 40	2.01	2.20
C21A—C20A	117.9(2)	C21B—C20B	122.3(2)	C16	119.91(10)	4.40	2.01	2.39
C7A—	112 0(6)	С7В—	111 8(4)	C7 N1 N2	114 00(12)	1.20	1.00	2.20
N1A—N2A	115.0(0)	N1B—N2B	111.8(4)	C7—IN1—IN2	114.00(12)	1.20	1.00	2.20
C8A—	100 2(5)	C8B—	116 2(2)	C9 N2 N1	110 54(11)	7.10	1.24	576
N2A—N1A	109.2(3)	N2B—N1B	110.3(3)	Co—N2—N1	110.34(11)	7.10	1.34	5.70
C3A—	116 6(4)	C3B—	110.0(4)	C3—01—	118 08(17)	2 20	2.29	0.02
01A—C22A	110.0(4)	O1B—C22B	119.9(4)	C22	118.98(17)	3.30	2.38	0.92

ⁱ: bonds in part A of d-MHDE.

ⁱⁱ: bonds in part B of d-**MHDE**.

ⁱⁱⁱ: bonds in o-**MHDE**.

^{iv}: absolute values of bond angle differences between parts A and B of d-MHDE.

^v: absolute values of bond angle differences between part A of d-**MHDE** and o-**MHDE**.

^{vi}: absolute values of bond angle differences between part B of d-**MHDE** and o-**MHDE**.

Fig. S1 The overlapping of three conformers in the crystal structures of o-MHDE and d-MHDE.

Fig. S2 The intermolecular interactions in various molecule pairings of d-MHDE. The indices I, II, III, IV and V for five molecules are the same as that in Fig. 3. Some molecule pairs such as I-

V, II-III and III-IV are not shown because there are no valuable NCIs between them. Another molecule pair II-V is not shown because all NCIs are the same as that in II-IV.