

Volume 74 (2018)

Supporting information for article:

Synthesis, structural characterization and fluorescence enhancement of chromophore-modified polyoxometalates

Gizaw D. Fura, Yong Long, Jun Yan, Wei Chen, Chang-Gen Lin and Yu-Fei Song

Synthesis of C<sub>14</sub>H<sub>9</sub>CH<sub>2</sub>NHC(CH<sub>2</sub>OH)<sub>3</sub> (**5**): The desired compound 5 was synthesized according to published method (Song *et al.*, 2007) Yield: 56.4 %. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, ppm):  $\delta = 1.71$  (s, 1H), 3.60 (d, 6H), 4.51 (t, 3H), 4.72 (s, 2H), 7.52 (m, 4H), 8.06 (d, 2H), 8.49 (d, 2H), 8.52 (s, 1H). <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, ppm):  $\delta = 132.89$ , 131.10, 129.86, 128.70, 126.33, 125.87, 125.04, 124.71, 61.61, 60.31, 38.04. ESI-MS (positive mode, CH<sub>3</sub>OH): 311.71 ([M+H]<sup>+</sup>).

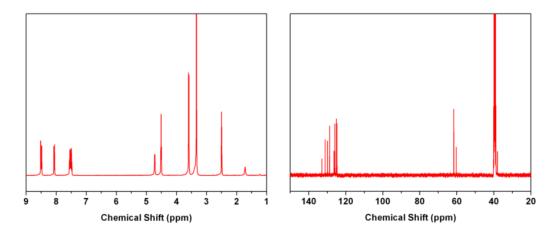
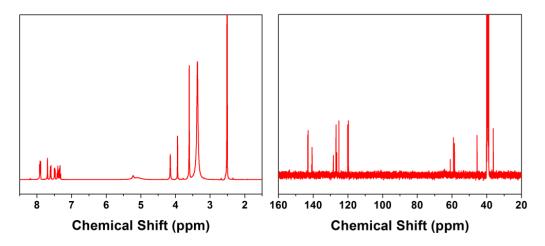




Figure S1 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 5.

Synthesis of C<sub>13</sub>H<sub>9</sub>CH<sub>2</sub>NHC(CH<sub>2</sub>OH)<sub>3</sub> (**6**): Yield: 81.8 %. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, ppm):  $\delta$  = 3.60 (d, 6H), 4.51 (t, 3H), 4.72 (s, 2H), 7.33 (t, 1H), 7.40 (t, 1H), 7.49 (d, 1H), 7.61 (d, 1H), 7.70 (s, 1H), 7.91 (m, 2H). <sup>13</sup>C-NMR (DMSO-*d*<sub>6</sub>, ppm):  $\delta$  = 143.15, 142.93, 140.67, 128.46, 126.90, 126.79, 125.87, 126.46, 125.19, 61.06, 59.19, 58.68, 45.60, 36.28. ESI-MS (positive mode, CH<sub>3</sub>OH): 300.51 ([M+H]<sup>+</sup>).



**Figure S2** <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of **6**.

Synthesis of  $C_{10}H_7CH_2NHC(CH_2OH)_3$  (7): Yield: 79.6 %. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>, ppm):  $\delta$  = 3.68 (d, 6H), 4.37 (s, 2H), 5.35 (m, 3H), 7.56 (m, 2H), 7.68 (t, 1H), 7.95 (m, 3H), 8.05 (m, 1H). <sup>13</sup>C-NMR (DMSO-

*d*<sub>6</sub>, ppm): δ = 132.69, 132.51, 131.06, 129.38, 127.87, 127.78, 127.73, 127.56, 126.49, 126.39, 66.00, 57.74, 45.54. ESI-MS (positive mode, CH<sub>3</sub>OH): 262.44 ([M+H]<sup>+</sup>).

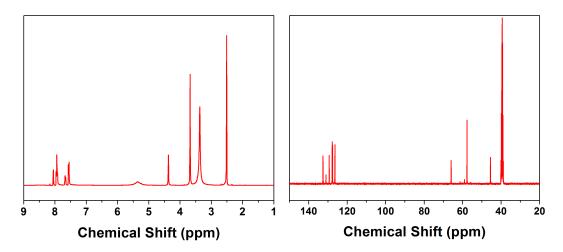
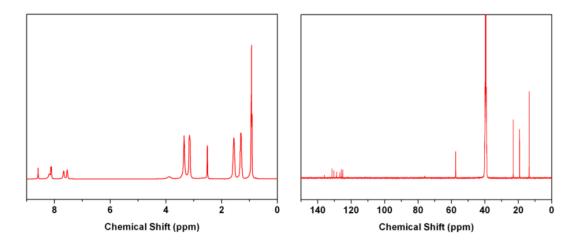




Figure S3 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 7.



**Figure S4** <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of **1**.

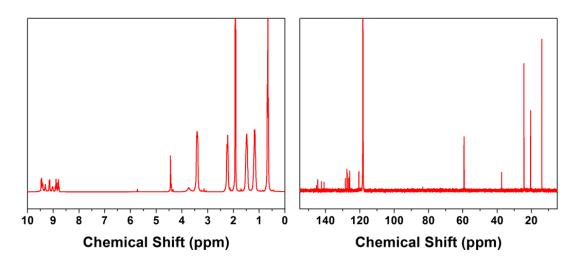



Figure S5 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 2.




Figure S6 <sup>1</sup>H-NMR (left) and <sup>13</sup>C-NMR (right) spectra of 3.

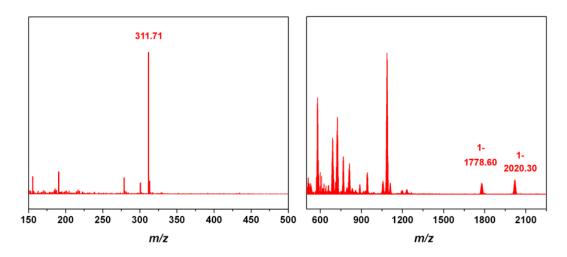



Figure S7 ESI-MS spectra of 5 (left) in positive mode and 1 (right) in negative mode.

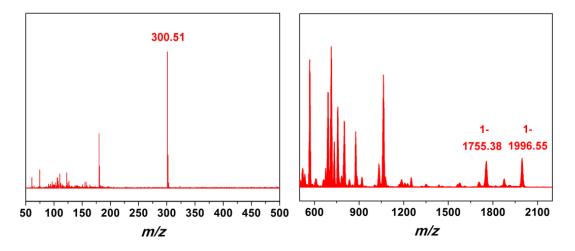
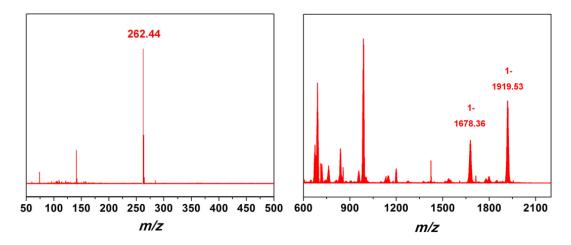
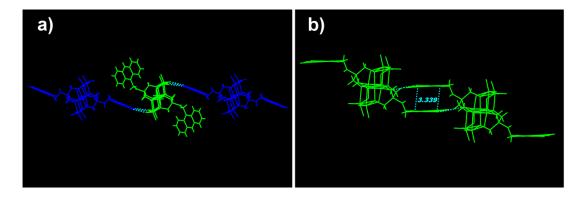
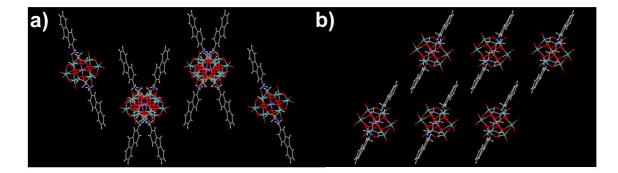
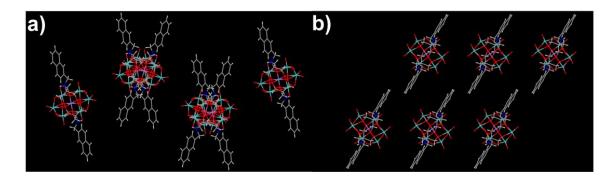
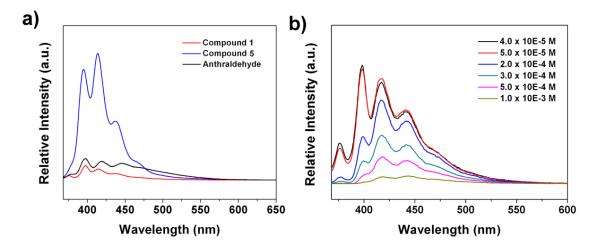



Figure S8 ESI-MS spectra of 6 (left) in positive mode and 2 (right) in negative mode.

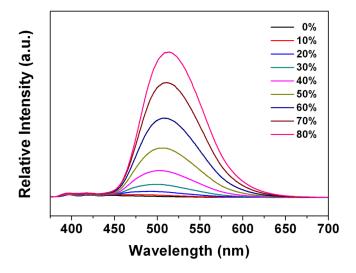






Figure S9 ESI-MS spectra of 7 (left) in positive mode and 3 (right) in negative mode.

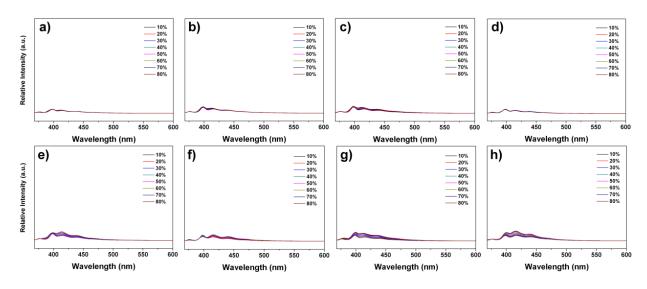



**Figure S10** a) Hydrogen bonding and b)  $\pi$ - $\pi$  stacking of **1** in crystal structure. TBA cations and acetonitrile molecules have been omitted for clarity.



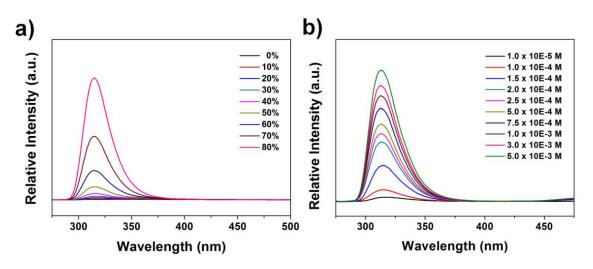

**Figure S11** X-ray crystal packing structure of 2 a) viewed from ' $a^*$ ' direction, and b) viewed from 'b' direction. TBA cations have been omitted for clarity (Mn purple, Mo light teal, O red, N blue, C grey, H white).



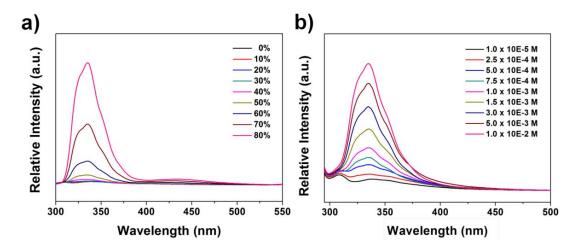

**Figure S12** X-ray crystal packing structure of **3** a) viewed from ' $a^*$ ' direction, and b) viewed from 'b' direction. TBA cations have been omitted for clarity (Mn purple, Mo light teal, O red, N blue, C grey, H white).



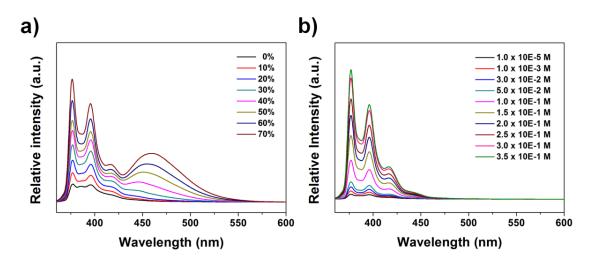
**Figure S13** Fluorescence spectra of a) **1**, **5**, and anthraldehyde in DMF solutions, and b) **1** at different concentritions in DMF solution. Chromophore concentration:  $1 \times 10^{-4}$  M.




**Figure S14** Fluorescence spectra of 9-anthraldehyde in H<sub>2</sub>O/DMF mixture with different H<sub>2</sub>O contents (v%). Chromophore concentration:  $1 \times 10^{-4}$  M. As can be observed, when H<sub>2</sub>O is added into DMF solution of 9-anthraldehyde, a broad excimer peak centered at  $\lambda = 490.2$  nm appears and gradually




shifts to 515.0 nm. The formation of excimer is considered to be detrimental and induces the quenching process.


**Figure S15** Fluorescence spectra of **1** in a) CH<sub>3</sub>OH/DMF, b) C<sub>2</sub>H<sub>5</sub>OH/DMF, c) *i*-Propanol/DMF, d) Acetone/DMF, e) Dichloromethane/DMF, f) Chloroform/DMF, g) THF/DMF, and h) Toluene/DMF mixtures (v%). Chromophore concentration:  $1 \times 10^{-4}$  M.



**Figure S16** Fluorescence spectra of **2** in a) H<sub>2</sub>O/DMF with different H<sub>2</sub>O contents (v%), and b) HCl/DMF mixture (HCl content: 10 v%) with different HCl concentrations. Chromophore concentration:  $1 \times 10^{-4}$  M.



**Figure S17** Fluorescence spectra of **3** in a) H<sub>2</sub>O/DMF with different H<sub>2</sub>O contents (v%), and b) HCl/DMF mixture (HCl content: 10 v%) with different HCl concentrations. Chromophore concentration:  $1 \times 10^{-4}$  M.



**Figure S18** Fluorescence spectra of **4** in a) H<sub>2</sub>O/DMF with different H<sub>2</sub>O contents (v%), and b) HCl/DMF mixture (HCl content: 10 v%) with different HCl concentrations. Chromophore concentration:  $1 \times 10^{-4}$  M.