

Volume 74 (2018)

Supporting information for article:

Scandium complexes with the tetraphenylethylene and anthracene dianions

John E. Ellis, Mikhail E. Minyaev, Ilya E. Nifant'ev and Andrei V. Churakov

Figure S1 The disorder of the non-coordinating toluene molecule over a two-fold rotation axis in $[(1,3-Ph_2C_5H_3)Sc(Ph_4C_2)(THF)]$ •(toluene)_{0.5}, (**5b**). Isotropic displacement parameters for C atoms are set to 50% probability level. The atom site occupancies are 50%. All carbon atoms for both molecules lie in the same plane.

Figure S2 The asymmetric unit of $\{[K(THF)_2]_2Sc_2(1,3-Ph_2C_5H_3)_2(C_{14}H_{10})_3\}$ (THF), (6). Atomic displacement ellipsoids are drawn at 30% probability level; H atoms of THF molecules and of Ph groups are omitted for clarity. A disorder of the non-coordinating THF molecule is not shown. Second components of the coordinated THF molecule and Ph group is shown with open solid lines.

Figure S3 The non-coordinating THF molecule (left) in (6), displays the disorder (right, H atoms not shown) generated by three perpendicular 2-fold rotation axes (green). Isotropic displacement parameters for O and C atoms are set to 50% probability level. The atom site occupancies are 25%.

Figure S4 One of disordered anthracene molecules in (6). Site occupancies are 100% for atoms C19, C20, H20, and 50% for C21, C17, H17, C18, H18 and H19. Atomic displacement ellipsoids are drawn at 30% probability level. The symmetry codes to generate equivalent atoms: (A) -x+1, -y, -z+1 (a 2-fold rotation axis); (B) x, y, -z+1 (a mirror plane); (C) -x+1, -y, z. The mirror plane is located perpendicular the anthracenide ligand plane, passing through atoms C21, and C21A. The 2-fold rotation axis passes through the ligand plane, going perpendicular to the mirror plane through centers of C21-C21A, C19-C19A, *etc.* bonds.

Figure S5 Packing diagram of $[K(THF)_2]_2[(1,3-Ph_2C_5H_3)_2Sc_2(C_{14}H_{10})_3]_{\infty}$ in (6) parallel to (001). One 2D layer is shown. H atoms, minor disorder components and non-coordinating THF molecules are omitted. Atomic displacement ellipsoids are drawn at 50% probability level.

Figure S6 Low temperature ¹H NMR spectra of $Na[Sc(Ph_4C_2)_2]$ in THF_{d-8} at 300MHz

Figure S7 COSY ${}^{1}H{}^{-1}H$ NMR spectrum of Na[Sc(Ph₄C₂)₂] in THF_{d-8} at 243K (300MHz)

Figure S8 HSQC 1 H- 13 C NMR spectrum of Na[Sc(Ph₄C₂)₂] in THF_{d-8} at 260K (600MHz and 151MHz)

Figure S9 HMBC 1 H- 13 C NMR spectrum of Na[Sc(Ph₄C₂)₂] in THF_{d-8} at 260K (600MHz and 151MHz).

Figure S10⁴⁵Sc NMR spectrum of $K[Sc(Ph_4C_2)_2]$ in THF_{d-8} at 72.94MHz.

Figure S11⁴⁵Sc NMR spectrum of ScCl₃(THF)₃ in THF_{d-8} at 72.94MHz.