

STRUCTURAL CHEMISTRY

Volume 74 (2018)

Supporting information for article:

Scandium complexes with the tetraphenylethylene and anthracene dianions

John E. Ellis, Mikhail E. Minyaev, Ilya E. Nifant'ev and Andrei V. Churakov

Figure S1 The disorder of the non-coordinating toluene molecule over a two-fold rotation axis in $\left[\left(1,3-\mathrm{Ph}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{Sc}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)(\mathrm{THF})\right] \cdot(\text { toluene })_{0.5},(\mathbf{5 b})$. Isotropic displacement parameters for C atoms are set to 50% probability level. The atom site occupancies are 50%. All carbon atoms for both molecules lie in the same plane.

Figure S2 The asymmetric unit of $\left\{\left[\mathrm{K}(\mathrm{THF})_{2}\right]_{2} \mathrm{Sc}_{2}\left(1,3-\mathrm{Ph}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)_{3}\right\}$ (THF), (6). Atomic displacement ellipsoids are drawn at 30% probability level; H atoms of THF molecules and of Ph groups are omitted for clarity. A disorder of the non-coordinating THF molecule is not shown. Second components of the coordinated THF molecule and Ph group is shown with open solid lines.

Figure S3 The non-coordinating THF molecule (left) in (6), displays the disorder (right, H atoms not shown) generated by three perpendicular 2-fold rotation axes (green). Isotropic displacement parameters for O and C atoms are set to 50% probability level. The atom site occupancies are 25%.

Figure S4 One of disordered anthracene molecules in (6). Site occupancies are 100% for atoms $\mathrm{C} 19, \mathrm{C} 20, \mathrm{H} 20$, and 50% for $\mathrm{C} 21, \mathrm{C} 17, \mathrm{H} 17, \mathrm{C} 18, \mathrm{H} 18$ and H19. Atomic displacement ellipsoids are drawn at 30% probability level. The symmetry codes to generate equivalent atoms: (A) $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$ (a 2-fold rotation axis); (B) $x, y,-z+1$ (a mirror plane); (C) $-x+1,-y, z$. The mirror plane is located perpendicular the anthracenide ligand plane, passing through atoms C21, and C21A. The 2 -fold rotation axis passes through the ligand plane, going perpendicular to the mirror plane through centers of C21-C21A, C19-C19A, etc. bonds.

Figure S5 Packing diagram of $\left[\mathrm{K}(\mathrm{THF})_{2}\right]_{2}\left[\left(1,3-\mathrm{Ph}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{Sc}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{10}\right)_{3}\right]_{\infty}$ in (6) parallel to (001).
One 2D layer is shown. H atoms, minor disorder components and non-coordinating THF molecules are omitted. Atomic displacement ellipsoids are drawn at 50% probability level.

Figure S6 Low temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Na}\left[\mathrm{Sc}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)_{2}\right]$ in $\mathrm{THF}_{\mathrm{d}-8}$ at 300 MHz

Figure S7 COSY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Na}\left[\mathrm{Sc}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)_{2}\right]$ in $\mathrm{THF}_{\mathrm{d}-8}$ at $243 \mathrm{~K}(300 \mathrm{MHz})$

Figure S8 HSQC ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Na}\left[\mathrm{Sc}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)_{2}\right]$ in $\mathrm{THF}_{\mathrm{d}-8}$ at $260 \mathrm{~K}(600 \mathrm{MHz}$ and 151MHz)

Figure S9 HMBC ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{Na}\left[\mathrm{Sc}_{\mathrm{C}}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)_{2}\right]$ in $\mathrm{THF}_{\mathrm{d}-8}$ at $260 \mathrm{~K}(600 \mathrm{MHz}$ and 151 MHz).

Figure $\mathbf{S 1 0}{ }^{45} \mathrm{Sc}$ NMR spectrum of $\mathrm{K}\left[\mathrm{Sc}\left(\mathrm{Ph}_{4} \mathrm{C}_{2}\right)_{2}\right]$ in $\mathrm{THF}_{\mathrm{d}-8}$ at 72.94 MHz .

Figure $\mathrm{S} 11^{45} \mathrm{Sc}$ NMR spectrum of $\mathrm{ScCl}_{3}(\mathrm{THF})_{3}$ in $\mathrm{THF}_{\mathrm{d}-8}$ at 72.94 MHz .

