

Volume 74 (2018)

Supporting information for article:

Synthesis, crystal structure and photophysical properties of 1,4-bis(1,3-diazaazulen-2-yl)benzene: a new  $\pi$  building block

Peili Sun, Zongyao Zhang, Hongxia Luo, Pu Zhang, Yujun Qin and Zhi-Xin Guo

# Synthesis, crystal structure and photophysical properties of 1,4bis(1,3-diazaazulene-2-yl)-benzene: a new $\pi$ building block

Peili Sun<sup>a</sup>, Zongyao Zhang<sup>a</sup>, Hongxia Luo<sup>a</sup>, Pu Zhang<sup>a\*</sup>, Yujun Qin<sup>a</sup> and Zhi-Xin Guo<sup>a\*</sup>
<sup>a</sup>Department of Chemistry, Renmin University of China, Zhongguancun Street, Beijing, China, 100872, People's Republic of China

Correspondence email: zhangpu@ruc.edu.cn; gzhixin@ruc.edu.cn

#### S1. Synthetic details

#### S1.1. General Methods

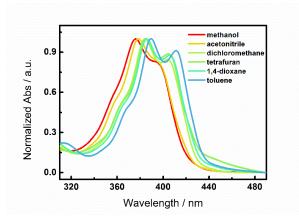
All reagents were purchased from J&K (China) and used as received unless other mentioned. Trifluoroacetic acid (99.5%) was purchased from Sigma-Aldrich. Dichloromethane (spectral grade) was purchased from J&K (China) for UV-vis experiments. All reagents were weighed and handled in room temperature. Flash column chromatography was performed over silica gel 200-300.

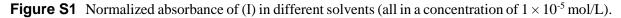
#### S1.2. Instrumentation

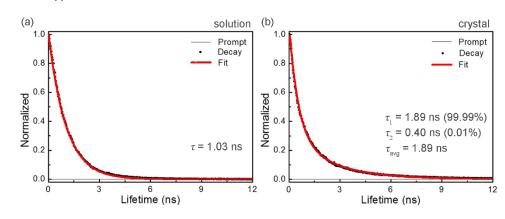
<sup>1</sup>H NMR spectra were recorded on Bruker 400 or 600 MHz and the chemical shifts were reported in parts per million ( $\delta$ ) relative to the internal solvent signals (7.26 ppm for CDCl<sub>3</sub>, 4.79 ppm for D<sub>2</sub>O and 3.31 ppm for CD<sub>3</sub>OD). <sup>13</sup>C NMR spectra were obtained at Bruker 100 or 150 MHz and referenced to the internal solvent signals (central peak 77.0 ppm for CDCl<sub>3</sub>). The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quartet; m, multiplet. The coupling constants are reported in Hertz (HZ). APEX II (Bruker Inc.) was used for ESI-MS.

UV-vis absorption spectra were recorded on Varian Cary 50 UV-vis spectrophotometer with dichloromethane as solvent.

<sup>1</sup>H NMR protonation titration spectra were recorded on Bruker 400 MHz with CDCl<sub>3</sub>:MeOD (3:1) as solvent.


#### S1.3. Synthetic details


2-Methoxy tropone (2): 2-Methoxy tropone was obtained as a light yellow oil (room temperature) according to the literature (Chen, 1999). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.19-7.15 (m, 1H), 7.03 (t, J = 10.3 Hz, 1H), 6.84-6.78 (m, 1H), 6.69 (d, J = 9.9 Hz, 1H), 3.88 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):


 $\delta$  180.55, 165.42, 136.90, 136.68, 132.78, 127.94, 112.45, 77.48, 77.36, 77.16, 76.84, 56.32; HRMS (ESI): calcd for [C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>+H<sup>+</sup>], *m/z* 137.0597; found, *m/z* 137.0597.

*Benzene-1,4-dicarboximidamide hydrochloride (4):* The synthetic route was according to previous report (Song *et al.*, 2010). <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O):  $\delta$  7.96 (s, 1H); <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O):  $\delta$  165.87, 132.90, 128.7; HRMS (ESI): calcd for [C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>+H<sup>+</sup>], *m/z* 163.09782; found, *m/z* 163.09713.

## S2. Solvent effect







S3. Lifetime of (I)

**Figure S2** Lifetime of (I). Fittings of the (a) emission of (I) in dichloromethane solution  $(1 \times 10^{-5} \text{ mol } \text{L}^{-1})$  at ~480 nm ( $\tau = 1.03 \text{ ns}$ ) and (b) emission of (I) in crystal at ~650 nm ( $\tau_{avg} = 1.89 \text{ ns}$ ).

#### S4. Theoretical calculation

### S4.1. TD-DFT calculation

| λ/ nm  | Oscillator Strength | Transition  | Amplitude |
|--------|---------------------|-------------|-----------|
| 421.29 | 1.2592              | LUMO←HOMO   | 0.70137   |
| 394.39 | 0.0041              | LUMO←HOMO-1 | 0.54357   |
| 391.03 | 0.0000              | LUMO←HOMO−2 | 0.57226   |

**Table S1**TD-DFT calculation results of (I).

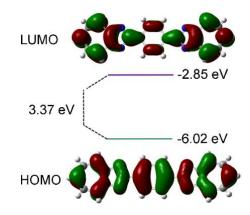



Figure S3 Calculated molecular frontier orbitals based on the (I) crystal coordinates.

## S4.2. Second-order nonlinear optical calculation

Polarizability ( $\alpha$ ):  $\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3$ ;

Polarizability anisotropy:  $\Delta \alpha = 2^{-1/2} [(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{xx} - \alpha_{zz})^2 + (\alpha_{yy} - \alpha_{zz})^2]^{1/2};$ 

Hyperpolarizability ( $\beta$ ):  $\beta = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$ ;  $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$ ,  $\beta_y = \beta_{yyy} + \beta_{yzz} + \beta_{xxy}$ ,  $\beta_z = \beta_{xxz} + \beta_{yyz} + \beta_{zzz}$ .

**Table S2**Calculated values of polarizability ( $\times 10^{-24}$  esu) and hyperpolarizability ( $\times 10^{-30}$  esu)parameters using DFT/B3LYP/6-311G(d,p) method for (I).

| Polarizability | Value (esu) | Hyperpolarizability | Value (esu) |
|----------------|-------------|---------------------|-------------|
| parameters     |             | parameters          |             |
| $\alpha_{xx}$  | 28.28       | $\beta_{xxx}$       | 0.00        |
| $\alpha_{xy}$  | -11.00      | $\beta_{xxy}$       | 0.00        |
| $\alpha_{yy}$  | 45.71       | $\beta_{xyy}$       | 0.00        |

| $\alpha_{xz}$ | -30.79 | $eta_{yyy}$   | 0.00 |  |
|---------------|--------|---------------|------|--|
| $\alpha_{yz}$ | 24.08  | $\beta_{xxz}$ | 0.00 |  |
| $\alpha_{zz}$ | 86.87  | $eta_{xyz}$   | 0.00 |  |
| α             | 53.62  | $eta_{yyz}$   | 0.00 |  |
| Δα            | 87.52  | $eta_{xzz}$   | 0.00 |  |
|               |        | $eta_{yzz}$   | 0.00 |  |
|               |        | $\beta_{zzz}$ | 0.00 |  |
|               |        | β             | 0.00 |  |
|               |        |               |      |  |

# S5. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra

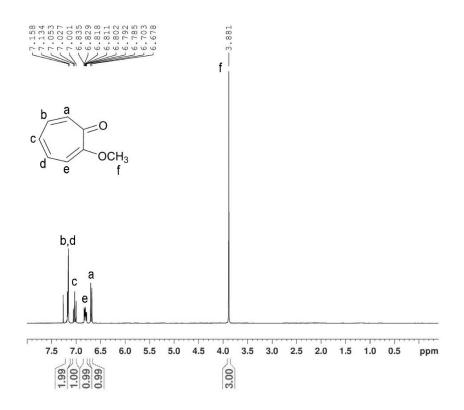
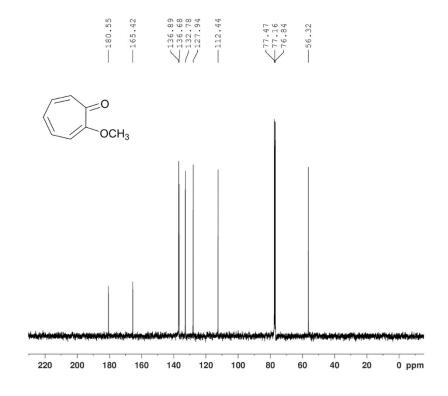
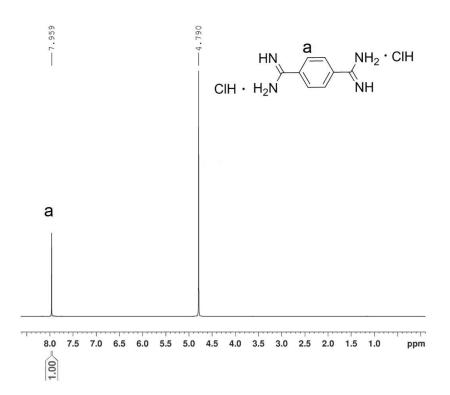
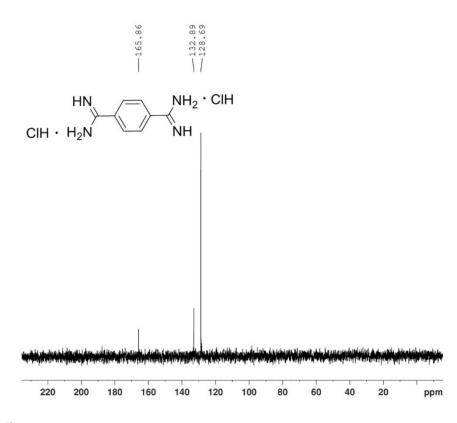
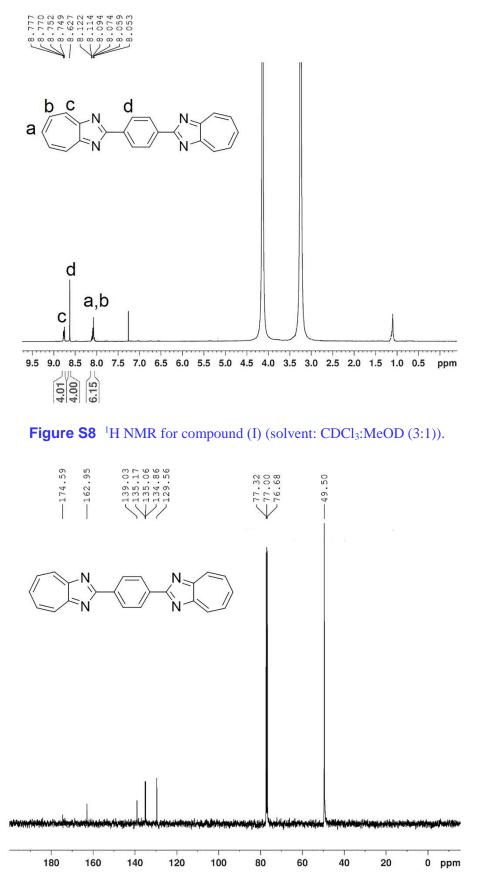



Figure S4 <sup>1</sup>H NMR of compound 2-methoxy tropone (2, measured in CDCl<sub>3</sub>).



Figure S5 <sup>13</sup>C NMR of compound 2-methoxy tropone (2, measured in CDCl<sub>3</sub>).







**Figure S7** <sup>13</sup>C NMR for compound Benzene-1,4-dicarboximidamide hydrochloride (4, measured in  $D_2O$ ).



**Figure S9** <sup>13</sup>C NMR for compound (I) (solvent: CDCl<sub>3</sub>:MeOD (3:1)).

# References

Chen, A. H. (1999). *J. Chin. Chem. Soc.* **46**, 35-39. Song, G.-L., Zhu, H.-J., Chen, L., Liu, S. & Luo, Z.-H. (2010). *Helv. Chim. Acta* **93**, 2397-2405.