

Volume 73 (2017)

Supporting information for article:

Invariom-model refinement and Hirshfeld surface analysis of wellordered solvent-free dibenzo-21-crown-7

Dennis Wiedemann and Julia Kohl

Table S1 Invarioms employed.

Atoms	Invariom
C2, C3, C12, C13, C15, C16, C18, C19, C28, C29	Clolclhlh
C5, C10, C21, C26	6-C#6c[#6c1o]#6c[#6c1h]1o
C6, C7, C8, C9, C22, C23, C24, C25	6-C#6c[#6c1o]#6c[#6c1h]1h
H2a, H2b, H3a, H3b, H12a, H12b, H13a, H13b, H15a, H15b, H16a, H16b, H18a, H18b, H19a, H19b, H28a, H28b, H29a, H29b	H1c[1o1c1h]
H6, H7, H8, H9, H22, H23, H24, H25	H@6c
O1, O14, O17	Olclc
O4, O11, O20, O27	O@6c1c

Table S2 Interaction energies for neighbouring molecules as computed using DFT [B3LYP/6-31G(d,p)].

N	Symmetry operator	R	$E'_{ m ele}$	$E'_{\rm pol}$	$E'_{ m dis}$	E'_{rep}	$E_{ m tot}$
2	x, y, z	4.98	-29.7	-6.6	-109.1	68.8	-88.8
1	-x, -y, -z	8.23	-2.4	-0.9	-33.3	15.4	-22.6
2	$x, -y+\frac{1}{2}, z+\frac{1}{2}$	11.69	-7.9	-1.6	-31.8	23.4	-22.9
2	$x, -y+\frac{1}{2}, z+\frac{1}{2}$	12.37	-7.5	-1.5	-28.9	21.4	-21.0
2	$-x, y+\frac{1}{2}, -z+\frac{1}{2}$	11.56	-6.1	-1.3	-17.1	12.8	-14.4
2	$-x, y+\frac{1}{2}, -z+\frac{1}{2}$	11.75	-1.1	-0.3	-14.5	9.4	-8.2
1	-x, -y, -z	8.96	-11.0	-1.9	-38.0	27.7	-29.1
1	-x, -y, -z	11.41	-0.1	-0.2	-11.6	2.2	-9.0
1	-x, -y, -z	12.93	-3.6	-0.5	-6.8	4.6	-7.2

Colour codes referring to Figure S2; N: number of neighbours of given type; symmetry operator for the wave function in relation to central molecule; R: distance between molecular centroids in Å, E': unscaled electrostatic (ele), polarisation (pol), dispersion (dis), and exchange-repulsion (rep) energies in kJ mol⁻¹; E_{tot} : scaled total interaction energy in kJ mol⁻¹.

Figure S1 Boat-like conformation of (I) in the crystal with governing least-squares planes, one including C18–C29 (orange) and one including O1–C13 as well as C29 (blue). Ball-and-stick representation with arbitrary radii (black: carbon, red: oxygen, hydrogen atoms omitted for clarity).

Figure S2 Molecular cluster for computation of interaction energies with colour-coded molecules (*cf.* Table S2). Ball-and-stick representation with arbitrary radii (central molecule with colour differentiation for elements).