Download citation
Download citation
link to html
3-Amino­carbonyl-1-benzyl­pyridinium bromide (N-benzyl­nicotinamide, BNA), C13H13N2O+·Br, (I), and 1-benzyl-1,4-di­hydro­pyridine-3-carboxamide (N-benzyl-1,4-di­hydro­nicotinamide, rBNA), C13H14N2O, (II), are valuable model compounds used to study the enzymatic cofactors NAD(P)+ and NAD(P)H. BNA was crystallized successfully and its structure determined for the first time, while a low-temperature high-resolution structure of rBNA was obtained. Together, these structures provide the most detailed view of the reactive portions of NAD(P)+ and NAD(P)H. The amide group in BNA is rotated 8.4 (4)° out of the plane of the pyridine ring, while the two rings display a dihedral angle of 70.48 (17)°. In the rBNA structure, the di­hydro­pyridine ring is essentially planar, indicating significant delocalization of the formal double bonds, and the amide group is coplanar with the ring [dihedral angle = 4.35 (9)°]. This rBNA conformation may lower the transition-state energy of an ene reaction between a substrate double bond and the di­hydro­pyridine ring. The transition state would involve one atom of the double bond binding to the carbon ortho to both the ring N atom and the amide substituent of the di­hydro­pyridine ring, while the other end of the double bond accepts an H atom from the methyl­ene group para to the N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617008877/sk3659sup1.cif
Contains datablocks BNA, rBNA, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617008877/sk3659BNAsup2.hkl
Contains datablock BNA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617008877/sk3659rBNAsup3.hkl
Contains datablock rBNA

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617008877/sk3659BNAsup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617008877/sk3659rBNAsup5.cml
Supplementary material

CCDC references: 1556091; 1556090

Computing details top

Data collection: APEX2 (Bruker, 2005) for BNA; APEX3 (Bruker, 2015) for rBNA. Cell refinement: SAINT (Bruker, 2005) for BNA; SAINT (Bruker, 2015) for rBNA. Data reduction: SAINT (Bruker, 2005) for BNA; SAINT (Bruker, 2015) for rBNA. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for BNA; SHELXT2014 (Sheldrick 2015a) for rBNA. For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(BNA) 3-Aminocarbonyl-1-benzylpyridinium bromide top
Crystal data top
C13H13N2O+·BrF(000) = 592
Mr = 293.16Dx = 1.572 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 4.7443 (3) ÅCell parameters from 3782 reflections
b = 39.332 (2) Åθ = 2.2–66.7°
c = 6.7618 (4) ŵ = 4.40 mm1
β = 100.990 (3)°T = 140 K
V = 1238.64 (13) Å3Triangular plate, colorless
Z = 40.22 × 0.12 × 0.03 mm
Data collection top
Bruker APEX DUO
diffractometer
2094 reflections with I > 2σ(I)
Radiation source: ImuSRint = 0.030
ω and phi scansθmax = 68.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.593, Tmax = 0.753k = 4646
6573 measured reflectionsl = 67
2131 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.26 w = 1/[σ2(Fo2) + 2.818P]
where P = (Fo2 + 2Fc2)/3
2131 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.92360 (8)0.11798 (2)0.08674 (6)0.02633 (14)
O10.3053 (6)0.00339 (6)0.2210 (4)0.0330 (6)
N10.4460 (6)0.10865 (6)0.5640 (4)0.0181 (6)
N20.6147 (7)0.04037 (9)0.1223 (5)0.0306 (7)
C10.5786 (8)0.14361 (8)0.5789 (6)0.0230 (7)
H1A0.671 (9)0.1466 (10)0.462 (7)0.028*
H1B0.736 (9)0.1425 (10)0.694 (6)0.028*
C20.4891 (7)0.08803 (8)0.4139 (5)0.0191 (7)
C30.3832 (7)0.05515 (8)0.4013 (5)0.0220 (7)
C40.2245 (8)0.04447 (8)0.5418 (6)0.0234 (8)
C50.1789 (8)0.06634 (9)0.6937 (6)0.0258 (8)
C60.2949 (7)0.09852 (8)0.7028 (5)0.0213 (7)
C70.3656 (7)0.17122 (8)0.5994 (5)0.0213 (7)
C80.2115 (9)0.18709 (9)0.4293 (7)0.0290 (8)
C90.0158 (9)0.21245 (10)0.4488 (7)0.0370 (10)
C100.0290 (9)0.22193 (9)0.6364 (8)0.0387 (11)
C110.1230 (9)0.20634 (9)0.8055 (7)0.0347 (10)
C120.3247 (8)0.18127 (8)0.7893 (6)0.0268 (8)
C130.4302 (8)0.03091 (8)0.2379 (6)0.0257 (8)
H1N0.691 (9)0.0595 (11)0.122 (6)0.023 (10)*
H2N0.654 (9)0.0263 (11)0.035 (7)0.026 (11)*
H20.597 (8)0.0974 (9)0.329 (6)0.013 (9)*
H40.144 (9)0.0216 (10)0.534 (6)0.030 (11)*
H50.066 (8)0.0582 (9)0.788 (6)0.016 (9)*
H60.275 (10)0.1149 (11)0.818 (7)0.038 (12)*
H80.238 (9)0.1808 (10)0.309 (7)0.029 (11)*
H90.081 (10)0.2234 (11)0.329 (7)0.034 (11)*
H100.164 (10)0.2391 (11)0.639 (7)0.042 (13)*
H110.098 (9)0.2121 (10)0.931 (7)0.033 (12)*
H120.443 (10)0.1713 (11)0.913 (7)0.041 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0270 (2)0.0300 (2)0.0230 (2)0.00053 (14)0.00731 (15)0.00040 (14)
O10.0408 (16)0.0213 (12)0.0385 (17)0.0028 (11)0.0118 (13)0.0089 (11)
N10.0183 (14)0.0174 (13)0.0190 (16)0.0001 (10)0.0045 (11)0.0003 (10)
N20.0367 (19)0.0230 (16)0.033 (2)0.0010 (14)0.0090 (15)0.0098 (14)
C10.0221 (17)0.0169 (16)0.032 (2)0.0041 (13)0.0107 (16)0.0028 (14)
C20.0209 (17)0.0206 (16)0.0152 (18)0.0028 (13)0.0024 (14)0.0003 (13)
C30.0209 (17)0.0200 (16)0.023 (2)0.0035 (13)0.0002 (14)0.0012 (13)
C40.0252 (18)0.0185 (16)0.025 (2)0.0020 (13)0.0010 (15)0.0000 (13)
C50.0266 (19)0.0232 (17)0.028 (2)0.0030 (14)0.0059 (16)0.0026 (14)
C60.0188 (17)0.0227 (16)0.024 (2)0.0012 (13)0.0086 (14)0.0009 (14)
C70.0207 (17)0.0152 (15)0.028 (2)0.0053 (12)0.0059 (15)0.0028 (13)
C80.035 (2)0.0235 (18)0.029 (2)0.0034 (15)0.0063 (17)0.0013 (15)
C90.035 (2)0.0263 (19)0.047 (3)0.0028 (16)0.001 (2)0.0090 (18)
C100.035 (2)0.0198 (18)0.063 (3)0.0044 (16)0.015 (2)0.0012 (18)
C110.045 (2)0.0232 (18)0.042 (3)0.0051 (16)0.023 (2)0.0116 (17)
C120.031 (2)0.0176 (16)0.031 (2)0.0040 (14)0.0060 (17)0.0044 (14)
C130.0287 (19)0.0200 (17)0.027 (2)0.0056 (14)0.0017 (16)0.0027 (14)
Geometric parameters (Å, º) top
O1—C131.229 (4)C4—H40.98 (4)
N1—C21.345 (4)C5—C61.377 (5)
N1—C61.346 (4)C5—H50.96 (4)
N1—C11.507 (4)C6—H61.03 (4)
N2—C131.333 (5)C7—C81.388 (5)
N2—H1N0.83 (4)C7—C121.392 (5)
N2—H2N0.86 (4)C8—C91.386 (6)
C1—C71.508 (5)C8—H80.88 (4)
C1—H1A0.98 (4)C9—C101.377 (7)
C1—H1B0.97 (4)C9—H90.96 (4)
C2—C31.384 (5)C10—C111.375 (6)
C2—H20.91 (4)C10—H100.93 (5)
C3—C41.385 (5)C11—C121.393 (5)
C3—C131.508 (5)C11—H110.91 (4)
C4—C51.388 (5)C12—H121.00 (5)
C2—N1—C6121.7 (3)N1—C6—C5120.2 (3)
C2—N1—C1118.6 (3)N1—C6—H6119 (2)
C6—N1—C1119.6 (3)C5—C6—H6121 (2)
C13—N2—H1N126 (3)C8—C7—C12119.5 (3)
C13—N2—H2N119 (3)C8—C7—C1120.3 (3)
H1N—N2—H2N115 (4)C12—C7—C1120.2 (3)
N1—C1—C7112.6 (3)C9—C8—C7120.1 (4)
N1—C1—H1A108 (2)C9—C8—H8120 (3)
C7—C1—H1A113 (2)C7—C8—H8120 (3)
N1—C1—H1B105 (2)C10—C9—C8120.4 (4)
C7—C1—H1B113 (2)C10—C9—H9122 (3)
H1A—C1—H1B105 (3)C8—C9—H9118 (3)
N1—C2—C3120.3 (3)C11—C10—C9119.8 (4)
N1—C2—H2114 (2)C11—C10—H10124 (3)
C3—C2—H2125 (2)C9—C10—H10116 (3)
C2—C3—C4118.6 (3)C10—C11—C12120.6 (4)
C2—C3—C13122.2 (3)C10—C11—H11122 (3)
C4—C3—C13119.1 (3)C12—C11—H11118 (3)
C3—C4—C5120.1 (3)C7—C12—C11119.5 (4)
C3—C4—H4120 (2)C7—C12—H12121 (3)
C5—C4—H4120 (2)C11—C12—H12120 (3)
C6—C5—C4119.0 (4)O1—C13—N2123.4 (3)
C6—C5—H5123 (2)O1—C13—C3119.3 (3)
C4—C5—H5118 (2)N2—C13—C3117.3 (3)
C2—N1—C1—C7130.0 (3)N1—C1—C7—C1289.8 (4)
C6—N1—C1—C751.8 (4)C12—C7—C8—C90.8 (5)
C6—N1—C2—C31.5 (5)C1—C7—C8—C9180.0 (3)
C1—N1—C2—C3176.7 (3)C7—C8—C9—C100.5 (6)
N1—C2—C3—C42.2 (5)C8—C9—C10—C110.6 (6)
N1—C2—C3—C13179.0 (3)C9—C10—C11—C120.7 (6)
C2—C3—C4—C51.3 (5)C8—C7—C12—C112.0 (5)
C13—C3—C4—C5179.9 (3)C1—C7—C12—C11178.7 (3)
C3—C4—C5—C60.4 (5)C10—C11—C12—C72.0 (6)
C2—N1—C6—C50.2 (5)C2—C3—C13—O1172.1 (3)
C1—N1—C6—C5178.4 (3)C4—C3—C13—O16.7 (5)
C4—C5—C6—N11.1 (5)C2—C3—C13—N29.9 (5)
N1—C1—C7—C891.0 (4)C4—C3—C13—N2171.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br10.91 (4)2.59 (4)3.503 (4)174 (3)
N2—H1N···Br10.83 (4)2.58 (4)3.414 (4)175 (4)
C1—H1B···Br1i0.97 (4)2.81 (4)3.653 (4)146 (3)
N2—H2N···O1ii0.86 (4)2.12 (5)2.972 (4)169 (4)
C6—H6···Br1iii1.03 (4)2.69 (5)3.489 (4)134 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
(rBNA) 1-Benzyl-1,4-dihydropyridine-3-carboxamide top
Crystal data top
C13H14N2OF(000) = 456
Mr = 214.26Dx = 1.283 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0186 (8) ÅCell parameters from 9967 reflections
b = 5.7435 (4) Åθ = 2.2–32.9°
c = 16.1124 (11) ŵ = 0.08 mm1
β = 94.474 (1)°T = 120 K
V = 1108.83 (13) Å3Irregular, yellow
Z = 40.58 × 0.25 × 0.15 mm
Data collection top
Bruker APEX DUO
diffractometer
3493 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
ω scansθmax = 33.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1718
Tmin = 0.649, Tmax = 0.746k = 88
18636 measured reflectionsl = 2424
3990 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: notdet
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.118All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3527P]
where P = (Fo2 + 2Fc2)/3
3990 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89767 (6)0.50377 (12)0.57312 (4)0.02467 (15)
N10.64579 (6)0.87267 (13)0.67126 (4)0.01799 (14)
N20.91027 (7)0.75546 (15)0.46691 (5)0.02322 (16)
C10.59976 (7)0.78251 (16)0.74587 (5)0.01867 (16)
C20.72644 (6)0.75304 (14)0.63397 (5)0.01599 (15)
C30.77070 (6)0.82373 (14)0.56338 (5)0.01580 (15)
C40.73028 (8)1.04139 (16)0.51711 (6)0.02220 (17)
C50.64308 (8)1.16257 (16)0.56385 (6)0.02323 (18)
C60.60583 (7)1.08005 (15)0.63390 (6)0.02056 (16)
C70.50365 (6)0.61407 (14)0.72984 (5)0.01598 (15)
C80.48033 (7)0.45594 (16)0.79211 (5)0.01969 (16)
C90.39102 (8)0.30213 (17)0.78060 (6)0.02391 (18)
C100.32334 (8)0.30488 (17)0.70625 (6)0.02567 (19)
C110.34655 (8)0.46045 (17)0.64384 (6)0.02439 (18)
C120.43627 (7)0.61424 (16)0.65527 (5)0.01973 (16)
C130.86313 (6)0.68262 (15)0.53561 (5)0.01651 (15)
H1N0.9703 (14)0.670 (3)0.4505 (9)0.041 (4)*
H2N0.8876 (13)0.888 (3)0.4416 (9)0.038 (4)*
H1A0.6600 (12)0.703 (2)0.7803 (8)0.028 (3)*
H1B0.5748 (12)0.917 (3)0.7777 (8)0.031 (3)*
H20.7528 (10)0.612 (2)0.6625 (8)0.021 (3)*
H50.6140 (13)1.311 (3)0.5437 (9)0.037 (4)*
H4A0.7937 (13)1.151 (3)0.5127 (9)0.039 (4)*
H4B0.6989 (12)1.001 (3)0.4589 (9)0.032 (4)*
H60.5501 (12)1.163 (2)0.6639 (9)0.032 (4)*
H80.5297 (12)0.455 (3)0.8433 (9)0.030 (3)*
H90.3778 (12)0.194 (3)0.8240 (9)0.034 (4)*
H100.2612 (12)0.191 (3)0.6987 (9)0.033 (4)*
H110.2998 (13)0.460 (3)0.5899 (9)0.037 (4)*
H120.4520 (12)0.723 (2)0.6110 (8)0.029 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (3)0.0255 (3)0.0232 (3)0.0096 (3)0.0094 (2)0.0065 (2)
N10.0172 (3)0.0175 (3)0.0198 (3)0.0023 (2)0.0048 (2)0.0000 (2)
N20.0225 (3)0.0258 (4)0.0224 (3)0.0047 (3)0.0089 (3)0.0060 (3)
C10.0170 (3)0.0235 (4)0.0157 (3)0.0008 (3)0.0024 (3)0.0025 (3)
C20.0144 (3)0.0162 (3)0.0174 (3)0.0008 (2)0.0015 (2)0.0011 (3)
C30.0158 (3)0.0153 (3)0.0162 (3)0.0001 (3)0.0013 (2)0.0008 (3)
C40.0279 (4)0.0172 (4)0.0220 (4)0.0037 (3)0.0054 (3)0.0034 (3)
C50.0289 (4)0.0156 (4)0.0253 (4)0.0058 (3)0.0029 (3)0.0002 (3)
C60.0217 (4)0.0160 (4)0.0240 (4)0.0037 (3)0.0021 (3)0.0033 (3)
C70.0149 (3)0.0169 (3)0.0164 (3)0.0033 (2)0.0024 (2)0.0017 (3)
C80.0189 (3)0.0225 (4)0.0180 (3)0.0044 (3)0.0037 (3)0.0017 (3)
C90.0237 (4)0.0216 (4)0.0273 (4)0.0010 (3)0.0075 (3)0.0038 (3)
C100.0226 (4)0.0223 (4)0.0324 (5)0.0038 (3)0.0038 (3)0.0018 (3)
C110.0223 (4)0.0247 (4)0.0253 (4)0.0030 (3)0.0036 (3)0.0017 (3)
C120.0205 (3)0.0197 (4)0.0187 (3)0.0002 (3)0.0011 (3)0.0008 (3)
C130.0157 (3)0.0184 (4)0.0155 (3)0.0006 (3)0.0017 (2)0.0015 (3)
Geometric parameters (Å, º) top
O1—C131.2464 (10)C4—H4B1.010 (14)
N1—C21.3651 (10)C5—C61.3333 (13)
N1—C61.4024 (11)C5—H50.967 (16)
N1—C11.4571 (11)C6—H60.979 (14)
N2—C131.3487 (11)C7—C121.3955 (11)
N2—H1N0.928 (17)C7—C81.3978 (12)
N2—H2N0.897 (16)C8—C91.3913 (13)
C1—C71.5134 (12)C8—H80.978 (14)
C1—H1A0.989 (14)C9—C101.3947 (14)
C1—H1B0.988 (15)C9—H90.959 (15)
C2—C31.3550 (11)C10—C111.3896 (14)
C2—H20.971 (13)C10—H100.994 (15)
C3—C131.4727 (11)C11—C121.3950 (12)
C3—C41.5159 (12)C11—H110.998 (15)
C4—C51.5076 (13)C12—H120.978 (14)
C4—H4A0.997 (16)
C2—N1—C6118.01 (7)C4—C5—H5119.1 (9)
C2—N1—C1120.84 (7)C5—C6—N1122.62 (8)
C6—N1—C1121.11 (7)C5—C6—H6122.3 (8)
C13—N2—H1N117.0 (10)N1—C6—H6115.1 (8)
C13—N2—H2N120.3 (10)C12—C7—C8118.88 (8)
H1N—N2—H2N122.4 (14)C12—C7—C1122.04 (7)
N1—C1—C7114.85 (7)C8—C7—C1119.07 (7)
N1—C1—H1A108.6 (8)C9—C8—C7120.84 (8)
C7—C1—H1A108.5 (8)C9—C8—H8121.3 (9)
N1—C1—H1B107.5 (8)C7—C8—H8117.8 (9)
C7—C1—H1B109.3 (8)C8—C9—C10119.97 (8)
H1A—C1—H1B107.9 (11)C8—C9—H9119.0 (9)
C3—C2—N1123.88 (8)C10—C9—H9121.0 (9)
C3—C2—H2120.8 (7)C11—C10—C9119.49 (9)
N1—C2—H2115.3 (7)C11—C10—H10121.8 (8)
C2—C3—C13116.42 (7)C9—C10—H10118.7 (8)
C2—C3—C4121.88 (7)C10—C11—C12120.55 (8)
C13—C3—C4121.66 (7)C10—C11—H11119.8 (9)
C5—C4—C3110.10 (7)C12—C11—H11119.6 (9)
C5—C4—H4A108.0 (9)C11—C12—C7120.26 (8)
C3—C4—H4A109.9 (9)C11—C12—H12120.0 (8)
C5—C4—H4B110.2 (8)C7—C12—H12119.8 (8)
C3—C4—H4B110.5 (9)O1—C13—N2120.55 (8)
H4A—C4—H4B108.2 (12)O1—C13—C3122.47 (7)
C6—C5—C4123.44 (8)N2—C13—C3116.98 (7)
C6—C5—H5117.5 (9)
C2—N1—C1—C786.06 (9)N1—C1—C7—C8156.84 (7)
C6—N1—C1—C791.57 (9)C12—C7—C8—C90.52 (12)
C6—N1—C2—C30.50 (12)C1—C7—C8—C9178.40 (8)
C1—N1—C2—C3178.21 (7)C7—C8—C9—C100.13 (13)
N1—C2—C3—C13175.34 (7)C8—C9—C10—C110.60 (14)
N1—C2—C3—C42.46 (13)C9—C10—C11—C120.43 (15)
C2—C3—C4—C53.16 (12)C10—C11—C12—C70.23 (14)
C13—C3—C4—C5174.52 (8)C8—C7—C12—C110.70 (12)
C3—C4—C5—C62.39 (13)C1—C7—C12—C11178.20 (8)
C4—C5—C6—N10.80 (15)C2—C3—C13—O11.90 (12)
C2—N1—C6—C50.36 (13)C4—C3—C13—O1179.70 (8)
C1—N1—C6—C5177.34 (8)C2—C3—C13—N2177.93 (8)
N1—C1—C7—C1224.27 (11)C4—C3—C13—N20.13 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.928 (17)1.937 (17)2.8625 (10)174.6 (14)
C1—H1B···O1ii0.988 (15)2.451 (14)3.1792 (10)130.2 (11)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds