Synthesis and structure of trans-[Rh(CO)(PPh₃)₂(NCBH₃)] Margarita R. Galding^a, Alexander V. Virovets^{bc}, Igor V. Kazakov^a, Manfred Scheer^c, Sergey N. Smirnov^a and Alexey Y. Timoshkin^a* ^aInstitute of Chemistry, Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russian Federation ^bNikolaev Institute of Inorganic Chemistry, Siberian Division of RAS, Acad. Lavrentyev str. 3, Novosibirsk, 630090, Russian Federation ^cInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany Correspondence email: a.y.timoshkin@spbu.ru ## **Supporting information** ## S1. General experimental procedures All operations were carried out in atmosphere of dry argon using Schlenk techniques. All solvents were purified according to standard procedures. CDCl₃ was washed with water, dried over CaCl₂ and distilled over CaH₂ before use. NaBH₃CN was purchased from Aldrich and used as received. IR spectra were recorded with the Specord 75 IR instrument (CaF₂ windows). NMR studies were performed at the Centre for Magnetic Resonance, St. Petersburg State University. The spectra were recorded on a Bruker spectrometer AVANCE III 400, at operating frequencies 400.13 MHz (¹H spectra), 100.61 MHz (¹³C{¹H}) spectra), 161.97 MHz (³¹P{¹H}) spectra and 128.38 MHz (¹¹B) spectra in CDCl₃ as solvent at 223 K. The ¹H chemical shifts were referenced to TMS using solvent residual protons as internal standards, 7.26 ppm for CDCl₃; the ¹³C chemical shifts were measured for samples with natural ¹³C abundance and were referenced to TMS, using solvent ¹³C as internal standard, 77.1 ppm for CDCl₃. The ³¹P chemical shifts were measured with 85% phosphoric acid as external standard, δ ³¹P 0.0 ppm. ¹¹B chemical shifts were externally referenced to BF₃OEt₂ (δ ¹¹B 0.00 ppm).