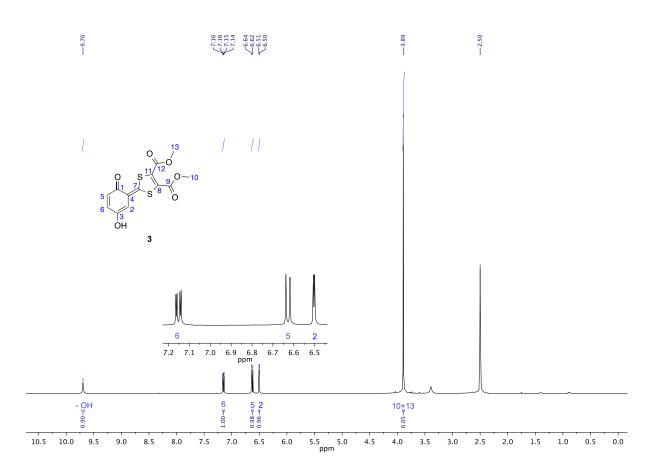

Supporting information

S1. General methods

The chemicals were used as purchased from commercial sources. THF was distilled from a sodium/benzophenone couple. Compound **2** was synthesized by literature procedure (Sato *et al.*, 1979). Flash column chromatography was carried out using silica gel (40-63 µm). Thin-layer chromatography (TLC) was performed using aluminum sheets precoated with silica gel (silica gel 60 F_{254}). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on an instrument with cryoprobe using the residual solvent as the internal standard (DMSO-d₆ $\delta_{\rm H}$ = 2.50 ppm and $\delta_{\rm C}$ = 39.52 ppm). All the chemical shifts are quoted on the δ scale (ppm), and all coupling constants (*J*) are expressed in Hz. In the ¹³C APT spectrum, CH and CH₃ correspond to the negative signals and C and CH₂ to positive signals. The high-resolution mass spectrum (HRMS) was recorded in positive mode on a MALDI FT-ICR instrument equipped with a 7T magnet, using dithranol as the matrix. The melting point is uncorrected. UV-Vis spectroscopic measurements were performed in a 1-cm path length quartz cuvette and all the UV-Vis spectra are solvent corrected. Elemental Analysis was performed at London Metropolitan University.


S2. Experimental

A solution of *p*-benzoquinone **1** (336 mg, 3.11 mmol) in distilled THF (10 mL) was cooled to -78 °C on a dry-ice bath and placed under argon atmosphere. In another flask, the phosphonium salt **2** (2.35 g, 4.63mmol) was dissolved in distilled THF (40 mL) and also cooled to -78 °C and placed under argon. LiHMDS base was slowly added to the salt solution; an intense red color was observed, and after stirring for 5 min, the solution was cannulated into the flask with the quinone solution under argon. The reaction mixture was stirred for 1 h at -78 °C, before the solvent was evaporated by a flow of nitrogen, while the mixture was kept at 0 °C on an ice bath. Purification by flash column chromatography (40-63 µm SiO₂, 20% EtOAc/CH₂Cl₂) afforded **3** (83 mg, 8%) as a deep purple solid. TLC (20% EtOAc/CH₂Cl₂): $R_f = 0.33$. M.p. 218-220 °C. ¹H NMR (DMSO-d₆, 500 MHz) $\delta = 9.70$ (s, 1H), 7.15 (dd, J = 9.7, 2.9 Hz, 1H), 6.63 (d, J = 9.7 Hz, 1H), 6.50 (d, J = 2.9 Hz, 1H), 8.35 (s, 6H) ppm. ¹³C NMR (DMSO-d₆, 125 MHz) $\delta = 174.88$, 159.61, 158.03, 147.60, 135.20, 126.11, 120.69,

102.70, 53.95 ppm; two carbon signals are missing. HRMS (MALDI+): m/z = 326.99912 [M+H⁺]. Calcd. (C₁₃H₁₁O₆S₂⁺): m/z = 326.99916. Elem. Anal. Calcd. (C₁₃H₁₀O₆S₂): C 47.85%, H 3.09%; Found: C 47.53%, H 2.98%. UV-Vis: $\lambda_{acetonitrile}$ (ϵ) = 350 nm (6.51 x 10³ M⁻¹ cm⁻¹), 522 nm (10.5 x 10³ M⁻¹ cm⁻¹); $\lambda_{dichloromethane}$ (ϵ) = 351 nm (5.39 x 10³ M⁻¹ cm⁻¹), 520 nm (8.99 x 10³ M⁻¹ cm⁻¹).

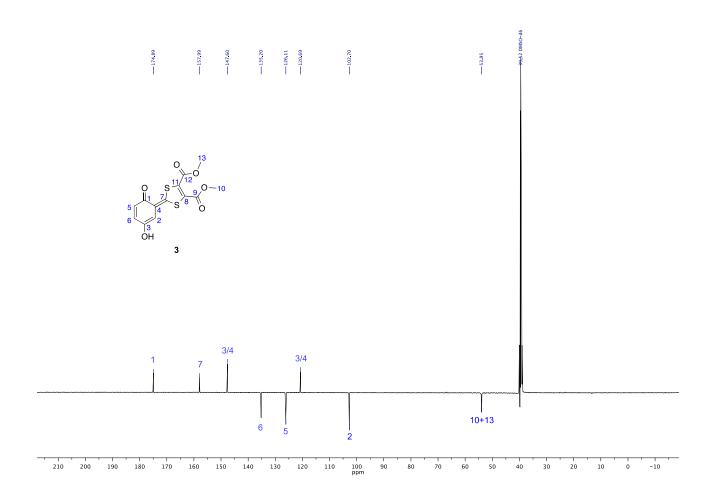

S2.1. ¹H NMR spectrum, 3.

Figure S1 ¹H NMR spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

¹H NMR (DMSO-d₆, 500 MHz) δ = 9.70 (s, 1H), 7.15 (dd, *J* = 9.7, 2.9 Hz, 1H), 6.63 (d, *J* = 9.7 Hz, 1H), 6.50 (d, *J* = 2.9 Hz, 1H), 8.35 (s, 6H) ppm.

S2.2. ¹³C APT NMR spectrum, 3.

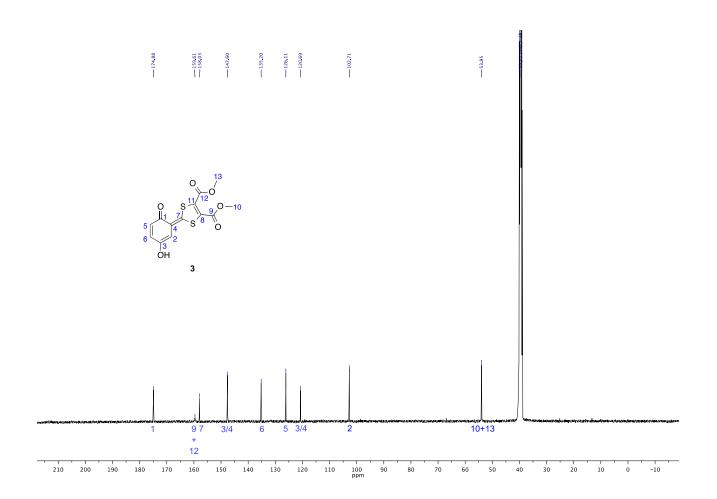


Figure S2 ¹³C APT NMR spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

¹³C APT NMR (DMSO-d₆, 125 MHz) δ = 174.89, 157.99, 147.60, 135.20, 126.11, 120.69, 102.70, 53.95 ppm.

Four carbon signals (8, 9, 11 and 12) are missing.

S2.3. ¹³C NMR spectrum, 3.

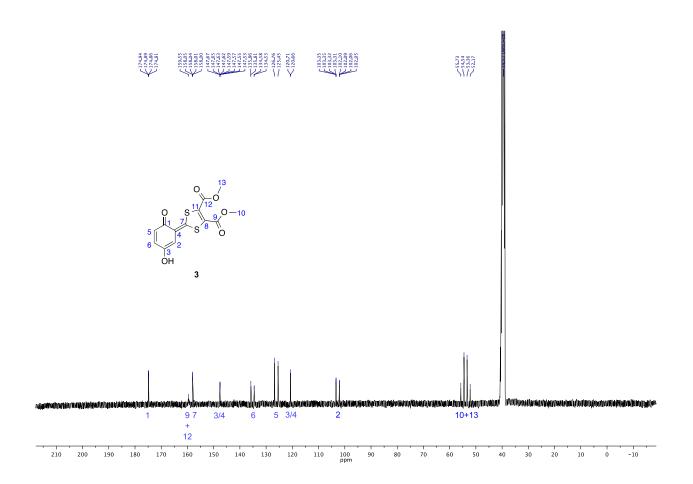


Figure S3 ¹³C NMR spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

 ^{13}C NMR (DMSO-d₆, 125 MHz) δ = 174.88, 159.61, 158.03, 147.60, 135.20, 126.11, 120.69, 102.70, 53.95 ppm.

Two carbon signals (8 and 11) are missing.

S2.4. ¹³C GDNR spectrum, 3.

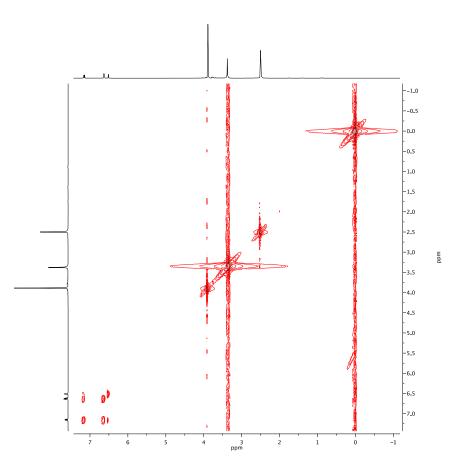
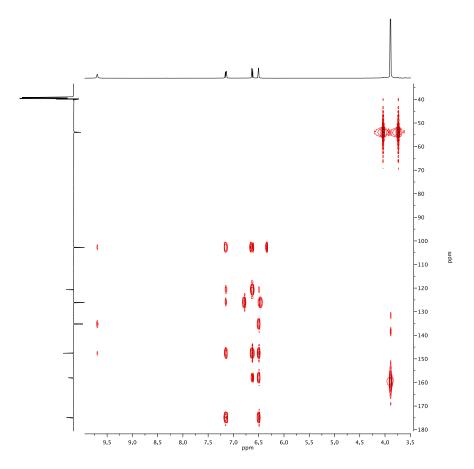
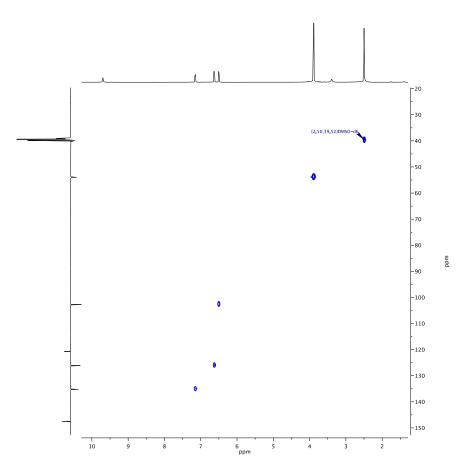


Figure S4 ¹³C GDNR spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

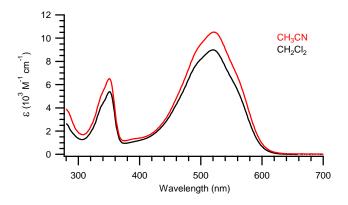
¹³C GDNR (DMSO-d₆, 125 MHz) δ = 174.88 (dd, *J* = 6.3, 10.1 Hz), 159.50 (m), 158.03 (dd, *J* = 1.3, 4.4 Hz), 147.60 (ddd, *J* = 2.4, 4.6, 10.5 Hz), 135.20 (dd, *J* = 6.5, 160.6 Hz), 126.11 (d, *J* = 164.7 Hz), 120.69 (d, *J* = 5.4 Hz), 102.70 (ddd, *J* = 1.0, 4.5, 158.4 Hz), 53.95 (d, *J* = 149.2 Hz) ppm.


Two carbon signals (8 and 11) are missing.

S2.5. ¹H COSY spectrum, 3.


Figure S5 ¹H/¹³C HMBC spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

S2.6. ¹H/¹³C HMBC spectrum, 3.


Figure S6 ¹H/¹³C HMBC spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

S2.7. ¹H/¹³C HSQC spectrum, 3.

 1 H/ 13 C HSQC spectrum of the Michael adduct **3** recorded in deuterated dimethylsulfoxide.

S2.8. UV-Vis spectroscopy, 3.

Figure S7 UV-Vis absorption spectra of compound **3** in CH_3CN (red curve) and CH_2Cl_2 (black curve) at 25 °C.

Table S1	Absorption maxima (λ) and molar absorptivities (λ) for compound 3 in CH ₃ CN and
CH ₂ Cl ₂ at 25	5 °C.

	λ_1 (nm)	$\epsilon_1 (M^{-1} cm^{-1})$	λ_2 (nm)	$\epsilon_2 (M^{-1} cm^{-1})$
CH ₃ CN	350	6.51 x 10 ³	522	$10.5 \text{ x } 10^3$
CH ₂ Cl ₂	351	5.39 x 10 ³	520	8.99 x 10 ³