

Volume 80 (2024)

Supporting information for article:

Growth, crystal structure and IR luminescence of KSrY1-xErx(BO3)2

Artem B. Kuznetsov, Konstantin A. Kokh, Liudmila A. Gorelova, Dmitry O. Sofich, Nursultan Sagatov, Pavel N. Gavryushkin, Oleg S. Vereshchagin, Vladimir N. Bocharov, Vyacheslav S. Shevchenko and Alexander E. Kokh

					KSrY(BO.)	
المسعب	لمسالعميهما	Uh-ee-	.l.a.	-	r.h	
 	-	L	L		KSrY _{0.99} Er _{0.01} (BO ₃)	2
المعمدا	-	La	L		KSrY _{0.95} Er _{0.05} (BO ₃)	2
		l	h	_	KSrY _{0.3} Er _{0.1} (BO ₃) ₂	~
لسعم	سيابا	L	LL	_	KSrY _{0.8} Er _{0.2} (BO ₃) ₂	
]			LL.		KSrY _{0.7} Er _{0.3} (BO ₃) ₂	
	mad	L	LL		KSrY ₉₈ Er ₉₄ (BO ₃) ₂	
	لمسمل	l	LL.	~	KSrY _{0.5} Er _{0.5} (BO ₃) ₂	
	and l	L	Lu_		KSrY _{0.4} Er _{0.6} (BO ₃) ₂	
	mil	L	LL_		KSrY _{0.3} Er _{0.7} (BO ₃) ₂	_
			4.4		KSrY ₀₂ Er ₀₈ (BO ₃) ₂	
	L. J.	L	h		KSrY _{0.1} Er _{0.9} (BO ₃) ₂	
			L.		KSrEr(BO ₃) ₂	
2	20 30	40 2theta, deg.		50	60	

Figure S1. XRD patterns of KSrY_{1-x}Er_x(BO₃)₂ syntheses at 950°C.

Table S1. Unit-cell	parameters of 1	KSrY _{1-x} Er _x	$(BO_3)_2 s$	yntheses	at 950°C.
---------------------	-----------------	-------------------------------------	--------------	----------	-----------

No.	Composition	a, Å	b	С	δ
1	KSrY(BO ₃) ₂	6.5823(3)	5.3625(7)	8.5242(1)	105.46(6)
2	KSrY _{0.99} Er _{0.01} (BO ₃) ₂	6.5801(9)	5.3614(4)	8.5233(2)	105.46(2)
3	KSrY _{0.95} Er _{0.05} (BO ₃) ₂	6.5800(5)	5.3610(6)	8.5231(5)	105.46(5)
4	KSrY _{0.9} Er _{0.1} (BO ₃) ₂	6.5794(8)	5.3617(4)	8.5224(6)	105.46(2)
5	KSrY _{0.8} Er _{0.2} (BO ₃) ₂	6.5774(2)	5.3608(5)	8.5205(1)	105.44(7)
6	KSrY _{0.7} Er _{0.3} (BO ₃) ₂	6.5742(2)	5.3602 (4)	8.5174(7)	105.42(7)

7	KSrY _{0.6} Er _{0.4} (BO ₃) ₂	6.5729(9)	5.3592(2)	8.5159(9)	105.41(3)
8	KSrY _{0.5} Er _{0.5} (BO ₃) ₂	6.5699(5)	5.3582(5)	8.5125(8)	105.39(9)
9	KSrY _{0.4} Er _{0.6} (BO ₃) ₂	6.5684(2)	5.3576(8)	8.5107(9)	105.38(5)
10	KSrY _{0.3} Er _{0.7} (BO ₃) ₂	6.5650(9)	5.3573(8)	8.5075(8)	105.37(4)
11	KSrY _{0.2} Er _{0.8} (BO ₃) ₂	6.5647(6)	5.3565(9)	8.5056(4)	105.36(4)
12	KSrY _{0.1} Er _{0.9} (BO ₃) ₂	6.5627(5)	5.3557(6)	8.5023(8)	105.36(6)
13	KSrEr(BO ₃) ₂	6.5606(7)	5.3548(7)	8.4983(1)	105.35(5)

Figure S2. Calculated phonon spectra of KSrY(BO₃)₂ polymorphs. The imaginary phonon frequencies are plotted as negative values.

Figure S3. The displacement pattern of the imaginary mode at $\sim 3i$ THz in KSrY(BO₃)₂-*R*3*m*.

Figure S4. Experimental and calculated (DFT) Raman spectra of KSrY(BO₃)₂- $P2_1/m$.

Figure S5. The eigenvectors of the Raman-active vibrational modes according to density functional theory (DFT) calculations.

Table S2. Observed and calculated Raman-active modes of KSrY(B	$3O_3)_2 - P2_1/m.$
--	---------------------

Observed	Calculated	Mulliken symbol	Observed	Calculated	Mulliken symbol
1280	1275	Ag	332	327	B_{g}

1236	1250	Bg	298	301	Ag
1212	1224	Ag	241	249	Ag
1190	1201	B _g	222	230	B _g
978	978	Ag	160	164	Ag
787	761	A _g	148	151	B_{g}
616	609	B_{g}	110	115	Ag
591	589	Ag	92	85	Ag
351	350	Ag	75	66	Bg

Figure S6. Total and partial phonon density of states of KSrY(BO₃)₂-*P*2₁/*m*.