

Volume 80 (2024)

Supporting information for article:

Structural changes in Rochelle salt on phase transitions revisited in a multi-temperature single-crystal X-ray diffraction study

Svetlana S. Sharaya, Boris A. Zakharov and Elena V. Boldyreva

Table S1Relative displacement of atoms (which are symmetry-related in PE phases) in the FE phasewith respect to the position of the pseudo-2-fold axis at 276 K. The atom with the largest relativedisplacement is highlighted in blue. See details on defining displacements in the main text, Section 3.3.

Atoms	Corresponding atoms in LT / HT PE phases	δx (Å)	<i>δy</i> (Å)	δz (Å)	Δ (Å)
K1	K1	0.011 (2)	-0.005 (2)	-	-
K2	K2	-0.0001 (9)	0.003 (7)	-	-
Na1 / Na2	Na1	-0,001 (3)	0.000 (2)	0.009 (2)	0.010 (2)
011 / 012	01	-0.002 (4)	-0.000 (4)	0.004 (4)	0.004 (4)
O21 / O22	O2	0.007 (5)	-0.001 (4)	0.007 (4)	0.010 (4)
O31 / O32	03	-0.019 (5)	-0.004 (5)	0.009 (4)	0.021 (4)
O41 / O42	O4	-0.006 (5)	-0.010 (5)	-0.001 (4)	0.012 (5)
O51 / O52	05	0.002 (5)	-0.004 (4)	0.005 (4)	0.007 (4)
O61 / O62	O6	-0.006 (4)	-0.004 (5)	0.012 (5)	0.014 (5)
071 / 072	07	-0.0004 (4)	-0.000 (5)	-0.004 (6)	0.006 (5)
O81 / O82	08	-0.005 (5)	0.006 (6)	0.005 (5)	0.009 (5)
O91 / O92	09	0.005 (5)	-0.017 (8)	-0.004 (6)	0.019 (8)
O101 / O102	O10	-0.017 (5)	0.024 (6)	0.027 (6)	0.040 (6)
C11 / C12	C1	-0.001 (5)	0.001 (6)	0.006 (5)	0.006 (5)
C21 / C22	C2	-0.005 (7)	0.004 (6)	0.006 (5)	0.009 (6)
C31 / C32	C3	-0.006(7)	-0.001 (6)	0.005 (6)	0.008 (7)
C41 / C42	C4	-0.010 (7)	-0.003 (3)	0.007 (6)	0.013 (7)

Table S2Interatomic distances at 253 K (LT PE), 276 K (FE) and 298 K (HT PE). For alltemperatures anharmonic model was used. The distances with the largest difference in the monoclinicphase are highlighted in blue.

253 K	Length (Å)	276 K	Length (Å)	298 K	Length (Å)
K1 – O1	2.8294 (19)	K1 – O11	2.829 (3)	K1 - O1	2.835 (2)
		K1 – O12	2.835 (3)		
$K1-O8^i\\$	3.094 (2)	$K1-O81^i\\$	3.104 (4)	$K1-O8^{i} \\$	3.122 (3)
		$K1-O82^i\\$	3.109 (4)		
K1 – O9	2.923 (3)	K1 – O91	2.943 (4)	K1 – O9	2.963 (3)
		K1 – O92	2.939 (4)		
$K1-O10^i \\$	3.389 (3)	$K1-O101^{\rm i}$	3.353 (4)	$K1-O10^{i} \\$	3.366 (4)
		$K1-O102^i \\$	3.403 (4)		
$K2-O4^{ii}\\$	2.8451 (16)	$K2-O41^{\rm ii}$	2.847 (2)	$K2-O4^{ii}\\$	2.8462 (18)
		$K2-O42^{iii} \\$	2.847 (2)		
$K2-O5^{\rm iii}$	2.9881 (16)	$K2-O51^{i\nu}$	2.993 (2)	$K2-O5^{iii}\\$	2.9957 (17)
		$K2-O52^{\nu}$	2.990 (2)		
$K2-O7^{i}$	2.7931 (19)	$K2-O71^{\rm i}$	2.796 (3)	$K2-O7^i \\$	2.802 (2)
		$K2-O72^{\nu i} \\$	2.793 (3)		
$K2-O8^{i} \\$	3.128 (2)	$K2 - O81^{i}$	3.114 (3)	$K2-O8^{i} \\$	3.114 (3)
		$K2-O82^{\nu i}$	3.126 (3)		
Na – O1	2.3651 (17)	Na1 – O11	2.368 (2)	Na – O1	2.3740 (19)
		Na2-O12	2.366 (2)		
$Na - O3^{ii}$	2.4613 (19)	$Na1 - O32^{iii}$	2.463 (3)	$Na - O3^{ii}$	2.467 (2)
		$Na2-O31^{vii}\\$	2.463 (3)		
$Na - O5^{ii}$	2.4893 (18)	$Na1-O52^{\rm iii}$	2.496 (3)	$Na - O5^{ii}$	2.499 (2)
		$Na2-O51^{vii}\\$	2.498 (2)		
Na – O7	2.3347 (18)	Na1 – O71	2.335 (3)	Na – O7	2.342 (2)
		Na2 – O72	2.336 (3)		
Na – O8	2.3612 (19)	Na1 – O81	2.362 (3)	Na – O8	2.363 (2)
		Na2-O82	2.365 (3)		
Na – O10	2.329 (2)	Na1 – O101	2.329 (3)	Na – O10	2.331 (2)

Supporting information, sup-3

		Na2-0102	2.327 (3)		
O1 – C1	1.262 (3)	O11 – C11	1.263 (4)	O1 – C1	1.258 (3)
		O12 - C12	1.261 (4)		
O2 – C1	1.242 (3)	O21 – C11	1.246 (4)	O2 - C1	1.244 (3)
		O22 - C12	1.243 (4)		
O3 - C4	1.251 (3)	O31 - C41	1.252 (4)	O3 - C4	1.252 (3)
		O32 - C42	1.254 (4)		
O4 - C4	1.258 (3)	O41 - C41	1.248 (4)	O4 - C4	1.255 (3)
		O42 - C42	1.253 (4)		
O5 - C2	1.422 (3)	O51 - C21	1.421 (4)	O5 - C2	1.420 (3)
		O52 - C22	1.423 (4)		
O6 – C3	1.417 (3)	O61 - C31	1.416 (4)	O6 – C3	1.418 (3)
		O62 - C32	1.416 (4)		
C1 – C2	1.533 (3)	C11 – C21	1.531 (4)	C1 – C2	1.531 (3)
		C12 – C22	1.530 (4)		
C2 – C3	1.527 (3)	C21 - C31	1.528 (4)	C2 - C3	1.524 (3)
		C22 - C32	1.529 (4)		
C3 – C4	1.528 (3)	C31 – C41	1.531 (4)	C3 – C4	1.532 (3)
		C32 - C42	1.528 (4)		

Symmetry codes for orthorhombic phases: (i) x, y, z - 1; (ii) -x + 1/2, y - 1/2, -z + 1; (iii) $x + 1/2, -y + \frac{1}{2}, -z$. Symmetry codes for monoclinic phase: (i) x, y, z - 1; (ii) x + 1/2, -y + 1/2, -z + 1; (iii) x + 1/2, -y - 1/2, -z + 1; (iv) x + 1/2, -y + 1/2, -z; (v) x + 1/2, -y - 1/2, -z + 1; (iv) x + 1/2, -y + 1/2, -z + 1.

100 K	D····A (Å)	276 K	D…A (Å)	308 K	D····A (Å)
O5—H5…O2	2.599 (2)	O51—H51…O21	2.603 (3)	O5—H5…O2	2.605 (3)
		O52—H52…O22	2.605 (3)		
O5—H5…O3 ⁱ	3.277 (2)	O51—H51…O31 ⁱ	3.350 (3)	05—H5…O3 ⁱ	3.367 (3)
		O52—H52…O32 ⁱ	3.357 (3)		
O5—H5…O4 ⁱ	3.248 (2)	$O51$ — $H51$ ···· $O41^{i}$	3.265 (3)	O5—H5…O4 ⁱ	3.265 (3)
		O52—H52…O42 ⁱ	3.255 (3)		
O6—H6…O10 ⁱⁱ	2.812 (3)	O61—H61…O102 ⁱⁱ	2.897 (4)	O6—H6…O10 ⁱⁱ	2.947 (4)
		O62—H62…O101 ⁱⁱⁱ	2.925 (4)		
O7—H17…O6	2.778 (2)	O71—H17…O61	2.795 (3)	O7—H17…O6	2.796 (3)
		O72—H37…O62	2.793 (3)		
O7—H27…O4 ⁱⁱⁱ	2.853 (3)	O71—H27…O41 ⁱⁱ	2.883 (4)	O7—H27…O4 ⁱⁱⁱ	2.891 (3)
		O71—H27…O41 ⁱⁱ	2.887 (3)		
08—H18…O3 ^{iv}	2.697 (3)	O81—H28····O32 ^v	2.709 (3)	O8—H18⋯O3 ^{iv}	2.704 (3)
		O82—H48…O31 ^{vi}	2.703 (3)		
O8—H28⋯O1 ^v	3.346 (2)	O81—H18…O11 ^{iv}	3.385 (3)	O8—H28⋯O1 ^v	3.395 (3)
		O82—H38…O12 ^{iv}	3.382 (3)		
O8—H28⋯O2 ^v	2.746 (3)	O81—H18····O21 ^{iv}	2.750 (3)	O8—H28⋯O2 ^v	2.754 (3)
		O81—H18····O21 ^{iv}	2.754 (3)		
O9—H19⋯O2 ^{vi}	3.122 (3)	O91—H19…O22 ^{vii}	3.107 (4)	O9—H19…O2 ^{vi}	3.110 (3)
		O92—H39…O21 ^{ix}	3.118 (4)		
O9—H19⋯O3 ^{vii}	3.154 (3)	O91—H19…O32 ^{viii}	3.163 (4)	O9—H19…O3 ^{vii}	3.177 (3)
		O92—H39…O31 ^x	3.171 (4)		
O9—H19⋯O6 ^{vii}	3.102 (3)	O91—H19…O62 ^{viii}	3.145 (4)	O9—H19…O6 ^{vii}	3.148 (3)
		O92—H39…O61 ^x	3.144 (4)		
O9—H29⋯O4 ^{viii}	2.785 (3)	O91—H29…O42 ⁱ	2.816 (4)	O9—H29…O4 ^{viii}	2.818 (4)
		O92—H49…O41 ⁱ	2.818 (4)		
O10— H110⋯O1 ^{ix}	2.713 (2)	O101—H110…O12	2.732 (4)	O10—H110…O1 ^{ix}	2.738 (3)

Table S3The donor-acceptor distances in the hydrogen bonds in the RS structure at 100 K (LT PE),276 K (FE) and 308 K (HT PE).

		O102—H310…O11	2.729 (4)		
O10— H210…O9 ^v	2.751 (3)	O101—H210⋯O91 ^{iv}	2.750 (4)	O10—H210…O9 ^v	2.759 (4)

O102—H410····O92^{iv} 2.758 (4)

Symmetry codes for orthorhombic phases: (i) x, y, z-1; (ii) -x+1/2, y+1/2, -z+1; (iii) x+1/2, -y+1/2, -z+1; (iv) -x+1/2, y-1/2, -z+2; (v) x, y, z+1; (vi) -x+1/2, y-1/2, -z; (vii) -x+1/2, y-1/2, -z+1; (viii) -x, -y, z-1; (ix) -x, -y, z.

Symmetry codes for monoclinic phase: (i) x, y, z-1; (ii) -x+1/2, y+1/2, -z+1; (iii) -x-1/2, y-1/2, -z+1; (iv) x, y, z+1; (v) -x+1/2, y-1/2, -z+2; (vi) -x-1/2, y+1/2, -z+2; (vii) -x+1/2, y-1/2, -z; (viii) -x+1/2, y-1/2, -z+1; (ix) -x-1/2, y+1/2, -z; (x) -x-1/2, y+1/2, -z+1.

Figure S1 C_{123} and C_{113} of K1 *vs.* T^2 . Vertical lines correspond to phase transitions ($T_1 = 255$ K, $T_2 = 297$ K). The area between vertical lines corresponds to FE phase. C_{123} and C_{113} are 3^{rd} order coefficients Gram-Charlier that are larger than 3σ . The presence of significant coefficients justifies the application of 3^{rd} order.

Figure S2 Electron density (left, the contour interval is 2 $e^{A^{-3}}$) and residual electron density (right, the contour interval is 0.05 $e^{A^{-3}}$) maps at 225 K (LT PE phase). Three different models for describing K1 atom were used: *har* - Harmonic, no split; *spl* - Harmonic, split; *anh* - Anharmonic, non-split. Models *spl* and *anh* reduce the intensity of the residual electron density.

Figure S3 Electron density (left, the contour interval is $2 \text{ e}\text{Å}^{-3}$) and residual electron density (right, the contour interval is 0.05 eÅ⁻³) maps at 276 K (FE phase). Three different models for describing K1 atom were used: *har* - Harmonic, no split; *spl* - Harmonic, split; *anh* - Anharmonic, non-split. Models *spl* and *anh* reduce the intensity of the residual electron density.

Figure S4 Electron density (left, the contour interval is $2 \text{ e}\text{Å}^{-3}$) and residual electron density (right, the contour interval is 0.05 eÅ⁻³) maps at 308 K (HT PE phase). Three different models for describing K1 atom were used: *har* - Harmonic, no split; *spl* - Harmonic, split; *anh* - Anharmonic, non-split. Models *spl* and *anh* reduce the intensity of the residual electron density.

Figure S5 Atomic displacement parameters, ADPs (50 % probability level) and occupancy of the K1 position split into two at 276 K (FE phase). In the split model (*spl*), one of position has a suspiciously small population and a strange ellipsoid shape.