

Volume 80 (2024)

Supporting information for article:

ELASTIC AND PIEZOELECTRIC PROPERTIES OF β-GLYCINE - A QUANTUM CRYSTALLOGRAPHY VIEW ON INTERMOLECULAR INTERACTIONS AND A HIGH-PRESSURE PHASE TRANSITION

Mark Khainovsky, Elena Boldyreva and Vladimir Tsirelson

Pressure, GPa	a, Å	b, Å	c, Å	β, grad	V, Å ³					
	Low Pressure Phase (β-glycine)									
0	5.357	5.954	4.992	113.23	146.04					
	5.378	6.174	5.065	111.87	156.07					
	5.388(2)	6.276(2)	5.091(2)	113.12(3)	158.31(10)					
	5.388(1)	6.130(3)	5.067(1)	113.52(1)	153.39(12)					
	5.354	5.932	4.983	113.50	145.14					
0.2	5.375	6.143	5.056	112.06	154.69					
	5.381(1)	6.217(2)	5.076(2)	113.42(2)	155.81(10)					
0.4	5.351	5.911	4.975	113.66	144.12					
	5.372	6.114	5.046	112.25	153.38					
	5.378(1)	6.184(2)	5.062(1)	113.64(2)	154.22(10)					
0.7	5.346	5.882	4.963	113.91	142.67					
	5.367	6.072	5.032	112.52	151.51					
	5.375(8)	6.125(1)	5.051(1)	113.93(1)	151.80(10)					
	Hig	h pressure p	hase (β'-glyci	ine)						
0.9	5.329	5.843	9.870	113.98	280.80					
	5.364	6.113	9.936	112.92	300.09					
	5.367(3)	6.010(3)	10.010(3)	114.16(6)	294.60(10)					
1.7	5.31	5.764	9.836	114.31	274.36					
	5.346	5.974	9.906	113.47	290.21					
	5.363(4)	5.932(3)	9.979(2)	114.33(6)	289.27(10)					

Table S1 Unit cell parameters and volume of β - (space group $P2_1$) and β '-glycine (space group $P2_1/c$) calculated at various external pressures*

* The experimental variable-pressure data at ambient temperature were taken from Tumanov *et al.* (2008). The first line corresponds to calculations with D3 dispersion correction (red), the second line reports results without dispersion correction D3 (blue), and the third line represents experimental XRD data (green). The fourth line at 0 GPa (black) corresponds to single-crystal variable-temperature data from Boldyreva *et al.*, (2003) extrapolated to 0 K.

Table S2 Calculated characteristics of covalent bonds at different pressures

Pressure,	0	0	0.2	0.4	0.7	0.9	1.7		
GPa	experimental								
Bond length, Å									

C1-C2	1.616(10)	1.523	1.522	1.521	1.521	1.521	1.519			
C1-O1	1.224(20)	1.256	1.256	1.256	1.256	1.256	1.256			
C1-O2	1.241(10)	1.261	1.261	1.261	1.261	1.260	1.261			
C2-N1	1.498(20)	1.471	1.471	1.469	1.468	1.469	1.467			
	Angle, degree									
O1-C1-O2	126(2)	126	126	126	125	125	125			
O1-C1-C2	117(1)	117	117	118	118	117	118			
O2-C1-C2	117(1)	117	117	117	117	117	118			
C1-C2-N1	112(1)	113	112	112	112	112	112			

Table S3 Topological characteristics at the hydrogen bonds critical points (BCPs) in β - and β' –glycine.

P, GPa	Bond type	r _(OH) , Å	Electron density ρ, a.u.	Laplacian of electron density, $\nabla^2 \rho$, a.u.	Virial energy density, v, a.u.	Kinetic energy density, g, a.u.	E _{H-bond} , kJ/mol (Vener <i>et</i> <i>al.</i> , 2012)	QEP, a.u. (Tsirelson <i>et al.</i> , 2016)	Ellipticity of H- bonds, ε
				Low press	sure phase	(β-glycine))		
	Ι	1.774	0.0381	0.109	-0.028	0.028	36.50	-0.0119	0.021
0	Π	1.664	0.0518	0.137	-0.040	0.037	48.84	-0.0094	0.022
0	III	2.233	0.0134	0.047	-0.015	0.011	14.70	-0.0043	0.070
	IV	2.118	0.0190	0.058	-0.011	0.015	19.17	-0.0046	0.095
	Ι	1.769	0.0386	0.111	-0.029	0.028	37.02	-0.0090	0.022
0.2	II	1.662	0.0521	0.137	-0.041	0.037	49.10	-0.0095	0.023
0.2	III	2.230	0.0135	0.048	-0.018	0.011	14.84	-0.0044	0.075
	IV	2.104	0.0196	0.059	-0.015	0.015	19.82	-0.0047	0.092
0.4	Ι	1.765	0.0390	0.112	-0.029	0.029	37.42	-0.0091	0.022
	II	1.660	0.0523	0.138	-0.041	0.038	49.36	-0.0094	0.028
	III	2.227	0.0136	0.048	-0.011	0.011	14.97	-0.0044	0.079
	IV	2.091	0.0201	0.060	-0.016	0.016	20.35	-0.0048	0.090

0.7	Ι	1.758	0.0397	0.114	-0.030	0.029	38.20	-0.0093	0.022		
	II	1.658	0.0526	0.139	-0.041	0.038	49.76	-0.0094	0.023		
	III	2.223	0.0137	0.049	-0.011	0.012	15.23	-0.0045	0.086		
	IV	2.073	0.0209	0.063	-0.017	0.016	21.14	-0.0050	0.087		
High pressure phase (β '-glycine)											
	Ι	1.765	0.0393	0.114	-0.030	0.029	38.07	-0.009	0.020		
	Π	1.662	0.0523	0.138	-0.041	0.038	49.36	-0.009	0.025		
0.9	III	2.052	0.0198	0.067	-0.016	0.017	21.66	-0.006	0.045		
	IV	2.167	0.0172	0.058	-0.014	0.014	18.38	-0.005	0.136		
	Π'				Critical p	oint not fo	und!				
	Ι	1.755	0.0403	0.117	-0.031	0.030	39.25	-0.009	0.022		
	Π	1.664	0.0521	0.138	-0.041	0.038	49.49	-0.009	0.026		
1.7	III	2.095	0.0182	0.065	-0.015	0.016	20.74	-0.006	0.059		
	IV	2.095	0.0198	0.063	-0.016	0.016	20.61	-0.005	0.104		
	II '				Critical p	oint not fo	und!				

Symmetry codes of acceptors in H-bonds: -x, y+1/2, -z, (II) x, y, z-1, (III) -x, y+1/2, -z, (IV) -x, y+1/2, -z+1)

Table S4 Comparison of selected calculated and experimental bond interatomic distances in the hydrogen bonds in β and β' glycine*

r, Å	01N (IV)		O2N (bond III)		O1H5 (bond IV)		O2H5 (bond III)	
P	Tumanov et	This	Tumanov et	This	Tumanov et	This	Tumanov et	This
CPa		work		work		work		work
Ora	<i>at.</i> , 2008	WOIK	<i>al.</i> , 2008	WOIK	<i>al.</i> , 2008	WOIK	<i>ai</i> ., 2008	WOIK
0.0001	3.078(20)	2.933	3.119(20)	3.050	_	2.233	-	2.118
0.0		a 00 c		a aa r		0.1.65		0.050
0.9	2,997(25)	2.896	3.074(25)	2.895	-	2.167	-	2.052
1.7	2.996(25)	2.873	3.043(25)	2.897	-	2.095	-	2.095

* Numeration of atoms and hydrogen bonds as in Figure 1. Symmetry codes of acceptors in H-bonds: (III) -x, y+1/2, -z, (IV) -x, y+1/2, -z+1.

Table S5Calculated elasticity moduli according to Voight, Reuss and Hill, as well as theanisotropy index of the linear compressibility of glycine at various external hydrostatic pressures.

P, GPa	K(Voight), GPa	K(Reuss), GPa	K(Hill), GPa	H _{min} , TPa ⁻¹	H _{max} , TPa ⁻¹	Hydrostatical compressibility anisotropy
0	29.95	21.66	25.80	-0.155	27.27	∞
0.2	30.95	22.45	26.70	-0.275	25.92	∞
0.4	31.92	23.39	27.65	-0.178	24.52	∞
0.7	33.46	24.82	29.14	-0.151	22.61	∞
0.9	30.92	21.42	26.17	-0.282	31.32	∞
1.7	35.99	26.29	31.14	0.399	26.70	66.979

The anisotropy of the elastic modulus is equal to the ratio of its maximum eigenvalue to the minimum one. In the case of negative compressibility, it is considered "infinite", which should be understood as the maximum possible non-equivalence of properties in different directions (Gaillac *et al.*, 2016).

Figure S1 Molecular graph for a fragment of β '-glycine crystal structure. Poincare-Hopf condition (0 = n - b + r - c) if satisfied: 0 = 40 - 40 + 0 - 0. Orange dots correspond to the bond critical points (BCP), yellow lines represent the bond paths. Red dotted lines are putative II' bond paths (were not confirmed by topological analysis of the electron density)

Figure S2 2D map of the electron density Laplacian in the planes corresponding to H-bonds at 0.0001 GPa (a, b, c) and a pressure above the phase transition point (0.9 GPa, d, e, f) Blue lines correspond to electron density concentrations. Isoline intervals are \pm (2, 4, 8) ·10n a.u. (-3 \leq n \leq 3). Symmetry codes of acceptors in H-bonds: (I) -x, y+1/2, -z, (II) x, y, z-1, (III) -x, y+1/2, -z, (IV) -x, y+1/2, -z+1)

Comparison with data reported by Guerin, Stapleton et al. (2018)

Because of a significant discrepancy of our results with those reported earlier by Guerin (Guerin *et al.*, 2018), we attempted to reproduce the results calculated by Guerin *et al.*, (2018) which were based on the Iitaka (1960) structural data. The same PBE exchange functional and the plane-wave basis set were applied. As a result, under the same conditions, we obtained the value of d_{16} = 65 pm/V (Table 4). Guerin *et al.*, (2018) used the Density Functional Perturbation Theory (DFPT) (Wu *et al.*, 2005), in order to evaluate piezoelectric tensors. The DFPT and Berry-phase schemes give quite similar results when using the same shrinking factors (Baima *et al.*, 2016).

We can speculate about the reasons of this discrepancy. First, the PBE exchange functional is hardly suitable to describe elastic properties (Erba *et al.*, 2013). Second, the plane-wave basis set performs improperly for molecular crystals. And the last, but not the least, there is a difference in the XRD structural data for calculation inputs. Additionally, due to significant difference in C_{44} component of elastic tensor, as long as piezoelectric coefficients are proportional to elastic ones, it is not surprising that our shear constants (namely d_{16} , d_{14} , d_{25} , d_{34} , and d_{36}) do not match. Because of all these reasons, we think that our results are closer to the true values, than those of Guerin *et al.*, (2018). As for the experimental data, unfortunately, up to now, the only experimental data available, are those reported by Guerin. We would like to avoid any speculation on this issue. Instead, we appeal to experimentalists to further study this point.

	PBE0/6-31G(d,p)	PBE PAW	PBE/6-31G(d,p)	PBE0/6-31G(d,p)
	(Present work, XRD data	(Guerin et al., 2018,	(calculated in this	(calculated in this
	from Tumanov et al.,	XRD data from	work using XRD data	work using XRD data
	2008)	Iitaka, 1960)	from Iitaka, 1960)	from Iitaka, 1960)
d ₂₁	-2.1	1.8	1.7	1.9
d ₂₂	4.9	-5.7	-0.6	-4.6
d ₂₃	-1.2	1.9	0.7	1.6
d_{14}	20.5	15.8	-22.2	-15.0
d ₁₆	-15.1	195	65	46.7
d ₂₅	0.78	5.1	-0.6	-0.4
d ₃₄	-29.6	1.3	-0.3	0.3
d ₃₆	28.5	7.5	-8.5	-8.9

Table S6Comparison of piezoelectric coefficients (pm/V) by Guerin et al., (2018) and our attemptto reproduce them.

	a, Å	b, Å	c, Å	β, °	Volume, Å ³
XRD	5.08	6.27	5.38	113.12	157
PBE0 6-31G(d.n)					
(Present work)	5.07	6.17	5.38	111.86	156
PBE 6-31G(d,p)	5.11	6.22	5.43	111.56	160
(Present work)					
(Guerin, et al., 2018)	5.13	6.39	4.99	112	164

Table S7Cell parameters obtained from calculations using (Iitaka, 1960) XRD data with differentbasis sets