

Volume 80 (2024)

Supporting information for article:

Lattice response to the radiation damage of molecular crystals: radiation-induced versus thermal expansivity

Charles J. McMonagle, Chloe A. Fuller, Emanuel Hupf, Lorraine A. Malaspina, Simon Grabowsky and Dmitry Chernyshov

Figure S1: Overlays of the crystal structure of $BiPh_3$ viewed along various axes and the corresponding section of the thermal and radiative expansivity indicatrices. Blue lines indicate a positive expansion and black, a negative expansion. The eigenvectors of the expansion are shown in red.

Figure S2: Overlays of the crystal structure of $Hg(CN)_2(PPh_3)_2$ viewed along various axes and the corresponding section of the thermal and radiative expansivity indicatrices. Blue lines indicate a positive expansion and black, a negative expansion. The eigenvectors of the expansion are shown in red.

Figure S3: Overlays of the crystal structure of $Hg(NO_3)_2(PPh_3)_2$ viewed along various axes and the corresponding section of the thermal and radiative expansivity indicatrices. Blue lines indicate a positive expansion and black, a negative expansion. The eigenvectors of the expansion are shown in red.

Thermal and radiative expansion tensors

Table S	S1:	Thermal	expansion	tensor	$\operatorname{components}$	for	the	three	material	s.
---------	-----	---------	-----------	-------------------------	-----------------------------	-----	-----	-------	----------	----

	Thermal expansion coefficients / MK^{-1}							
Compound	α_{11}	α_{22}	α_{33}	α_{12}	α_{13}	α_{23}		
$Hg(NO_3)_2(PPh_3)_2$	48	40	23	0	-25	0		
$Hg(CN)_2(PPh_3)_2$	28	79	46	0	0	0		
BiPh_3	74	80	51	0	5	0		
$Hg(CN)_2(PPh_3)_2$ BiPh ₃	28 74	79 80	$\begin{array}{c} 46\\51 \end{array}$	0 0	$\begin{array}{c} 0 \\ 5 \end{array}$	0 0		

Table S2: Radiative expansion tensor components for the three materials.

	Radia	ative ex	pansion	l coeff	icients	$/ MGy^{-1}$
Compound	α_{11}	α_{22}	α_{33}	α_{12}	α_{13}	α_{23}
$Hg(NO_3)_2(PPh_3)_2$	2.8	-0.33	-0.26	0	-1.1	0
$Hg(CN)_2(PPh_3)_2$	0.10	0.13	0.05	0	0	0
BiPh_3	0.46	0.48	0.31	0	0.06	0