

STRUCTURAL SCIENCE

 CRYSTAL ENGINEERING MATERIALSVolume 79 (2023)
Supporting information for article:

Hydrogen-bond network in sodium chloride tridecahydrate, analogy with ice VI

Keishiro Yamashita, Kazuya Nakayama, Kazuki Komatsu, Takashi Ohhara, Koji Munakata, Takanori Hattori, Asami Sano-Furukawa and Hiroyuki Kagi

S1. In-situ Single-crystal neutron diffraction of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ under high pressure

Figure S1 Representative diffraction pattern of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ described by the STARGazer programme (Ohhara et al., 2009). The diffraction data were collected at 1.7 GPa and 298 K in the diamond anvil cell (Yamashita, Komatsu, Ohhara et al., 2022) using the Laue-TOF diffractometer at BL18 (SENJU) in MLF J-PARC (Ohhara et al., 2016). The diamond anvil cell was mounted in the up-side-down orientation $\left(\chi=0^{\circ}\right.$; see Figure 2 in Yamashita, Komatsu, Ohhara et al., 2022). Diffraction patterns are extracted for time-of-flight $=10-34 \mathrm{~ms}$.

S2. Hydrogen-bond structure with violation of the ice rules

Figure S2 Close-up view around O 8 in $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$. Red, pale blue/white, and yellow balls correspond to oxygen, deuterium, and sodium. The two-colour divisions for deuterium represent their occupancy determined from the neutron experiments. The oxygen and deuterium are labelled.

S3. Interatomic correlation in SC13 [$\left.\mathrm{NaCl} \cdot 13 \mathrm{H}(\mathrm{D})_{2} \mathrm{O}\right]$

Figure S3 Partial atomic pair correlation function $g(r)$ of the $\mathrm{O}-\mathrm{O}, \mathrm{Cl}-\mathrm{O}, \mathrm{Cl}-\mathrm{Cl}, \mathrm{Na}-\mathrm{O}$, and $\mathrm{Na}-\mathrm{Cl}$ in SC13 simulated by PDFGUI (Farrow et al., 2007). The latter three are displayed with vertical offsets of $2,5,10$, and 15 , respectively for clarity. The structure model determined by the neutron diffraction at 1.7 GPa and 300 K is used.

S4. Powder neutron diffraction

Powder neutron diffraction measurements of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ were also carried out on the BL11 beamline (PLANET; Hattori et al., 2015) in the Material and Life Science Experimental Facility (MLF) of J-PARC, Ibaraki, Japan. Pressure and temperature were controlled using a $P-T$ variable cell, the so-called MITO system (Komatsu et al., 2013). The $\mathrm{NaCl}+9 \mathrm{D}_{2} \mathrm{O}$ solution was loaded into a pair of TiZr gaskets (Marshall \& Francis, 2002) and they were set in an aluminium ring. No additional pressure marker was enclosed, the pressure was determined from the equation of state of NaCl which precipitated from the solution with increasing pressure (Skelton et al., 1984). The sample was encapsulated by compressing to 3 tonnes and cooled to 200 K by $5 \mathrm{~K} \mathrm{~min}^{-1}$. Then the sample was compressed up to 24 tonnes, and heated to 250 K . After heating, the sample was transformed into the mixture of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$, ice VIII and NaCl . We collected the neutron diffraction data at 2.2 GPa and 250 K.

S4.1. Structure refinement

The crystal structure of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ was refined using GSAS (Larson \& Von Dreele, 2004) + EXPGUI (Toby, 2001). The initial structure was derived from the results of single-crystal neutron diffraction. Rietveld method was used for powder data optimization of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ and ice VIII, NaCl . It is likely that NaCl partially became coarse crystals when the sample first crystallised and it remained during measurements. The deuterium occupancies are restricted to follow the ice rules (Details in the main text). The number of parameters to be refined is reduced by constraints of $U_{\text {iso }}$ to be identical among all deuterium atoms, oxygen atoms coordinating on the same sodium atom, or oxygen atoms of interstitial water. To avoid divergence of some deuterium positions, covalent O-D and hydrogen-bonded $\mathrm{D} \cdot \mathrm{O}$ are restrained to be $0.966 \AA$ and $1.8 \AA$. The covalent $\mathrm{O}-\mathrm{D}$ length is from a precise structure analysis of ice VII at 2.2 GPa and 274 K (Yamashita, Komatsu, Klotz et al., 2022). The hydrogen-bonding distance is from the average of the single-crystal neutron results. The diffraction patterns with refinement results are shown in Figure S4. Details of refinement are given in Table S1. The derived deuterium occupancies are Occ. $(\mathrm{D} 4 \mathrm{~A})=0.886(10)$ and Occ. $(\mathrm{D} 6 \mathrm{~A})=0.835$ (12).

Table S1 Details of the refinement of powder neutron experiment

Crystal data	
Chemical formula	$\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$
M_{r}	318.85
Temperature (K)	250
Pressure (GPa)	2.2*
Crystal system, space group	Monoclinic, $C 2 / m$
$a, b, c(\AA)$	11.3121 (4), 11.7688 (7), 10.8106 (5)
$\beta\left({ }^{\circ}\right)$	119.653 (3)
$V\left(\AA^{3}\right)$	1250.73 (5)
Z	4
Calculated density ($\mathrm{g} \mathrm{cm}^{-3}$)	1.693
Data collection	
Radiation type	Pulsed white neutron
Diffractometer	PLANET (BL11), MLF, J-PARC
Specimen mounting	The MITO system
Data collection mode	Time-of-flight
2θ values	$2 \theta_{\text {min }}=79^{\circ}, 2 \theta_{\text {max }}=101^{\circ}$
d range/ $/ \AA$	0.5-6.0
R factors and goodness of fit	$R_{\mathrm{p}}=0.0523, w R_{\mathrm{p}}=0.0415$,
	$R\left(F^{2}\right)=0.1098, \chi^{2}=7.334$
Number of data points	4328
Number of refined parameters, restraints	133, 44

Note: (*) estimated from the lattice parameter of NaCl (Skelton et al., 1984).

Figure S4 Powder neutron diffraction pattern of $\mathrm{NaCl} \cdot 13 \mathrm{D}_{2} \mathrm{O}$ at 2.6 GPa and 250 at the BL 11 (PLANET) in the MLF J-PARC.

S5. Construction of completely ordered configurations in SC13

To figure out possible configurations in the hydrate, the disordered hydrogen-bond sub-network is extracted from the unit cell by eliminating other than disordered hydrogen bonds from Figure 5d. The internetwork hydrogen bonds between O 7 and O 8 are unicursal because other hydrogen bonds from and to O 8 are unidirectional. Therefore, one of the two equivalent but independent subnetworks, related by C-centring, is enough to count up the configurations. Figure S 5 represents the reduced topology of the disordered hydrogen-bond subnetwork in SC13 by omitting ordered bonds and oxygen nodes on unicursal chains. The disordered sub-network is completed within itself. Topological analyses revealed that the single subnetwork can have 28 types of configurations. A combination of two subnetworks in a unit cell results in 784 possible configurations. From a symmetric analysis, 128 unique configurations were finally found.

Figure S5 (a) Topological graph of the hydrogen-bond network in SC13 represented by nodes for oxygen and edges for hydrogen bonds. Nondirectional dot lines and unidirectional solid arrows correspond to fully-disordered and completely-ordered hydrogen bonds, respectively. Partiallydisordered hydrogen bonds are described as coloured dashed arrows. Red and blue colours of partially-disordered hydrogen bonds correspond to those in which deuterium occupancies can be derived from Occ. (D4A) and Occ. (D6A), respectively. Orange nodes represent oxygen atoms on the mirror plane. A single network in the unit cell was extracted from the two interpenetrated networks except for the internetwork hydrogen bonds between 07 and O8. (b) Extracted graph from (a) for reduced representation of the disordered hydrogen-bond subnetwork in SC13. Directional and nondirectional edges between nodes correspond to completely- and partially-disordered hydrogenbond chains, respectively, derived by the neutron diffraction data. From the ice rules, O4, O6, and O7 respectively accept 2,2 , and 1 hydrogen bonds from the neighbouring nodes and donate 1,2 , and 2 hydrogen bonds to the other neighbouring nodes.

Table S2 Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Na1-O1	2.305 (18)	O5-D5A	0.913 (19)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {i }}$	2.381 (19)	O5-D5C	0.94 (13)
$\mathrm{Na} 2-\mathrm{O} 3$	2.365 (16)	O5-D5B	1.02 (3)
$\mathrm{Na} 2-\mathrm{O} 4{ }^{\text {ii }}$	2.388 (19)	O6-D6B	0.91 (4)
O1-D1A	0.929 (16)	O6-D6C	0.95 (3)
O1-D1B	0.93 (3)	O6-D6D	1.0 (2)
$\mathrm{O} 2-\mathrm{D} 2 \mathrm{C}$	0.93 (8)	O6-D6A	0.98 (3)
$\mathrm{O} 2-\mathrm{D} 2 \mathrm{~B}$	0.93 (3)	O7-D7D	0.83 (17)
$\mathrm{O} 2-\mathrm{D} 2 \mathrm{~A}$	0.974 (18)	O7-D7B	0.94 (4)
O3-D3	0.962 (16)	O7-D7C	0.96 (5)
O4-D4A	0.93 (3)	O7-D7A	0.97 (2)
O4-D4C	0.97 (3)	O8-D8B	0.96 (4)
O4-D4B	0.99 (4)	O8-D8A	1.00 (2)
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {iii }}$	93.4 (5)	$\mathrm{D} 4 \mathrm{C}-\mathrm{O} 4-\mathrm{Na} 2{ }^{\text {vi }}$	107 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {i }}$	90.7 (10)	$\mathrm{D} 4 \mathrm{~B}-\mathrm{O} 4-\mathrm{Na} 2^{\text {vi }}$	99 (3)
$\mathrm{O} 3-\mathrm{Na} 2-\mathrm{O} 4{ }^{\text {iv }}$	88.0 (5)	D5A-O5-D5C	116 (6)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Na} 2-\mathrm{O} 4{ }^{\text {i }}$	85.5 (10)	D5A-O5-D5B	100 (2)
D1A-O1-D1B	112 (2)	D5C-O5-D5B	99 (6)
D1B ${ }^{\text {v }}-\mathrm{O} 1-\mathrm{D} 1 \mathrm{~B}$	98 (4)	D6B-O6-D6C	123 (5)
D1A-O1-Na1	107.6 (17)	D6B-O6-D6D	93 (9)
D1B-O1-Na1	113.9 (19)	D6C-O6-D6D	108 (8)
D2C-O2-D2B	122 (7)	D6B-O6-D6A	107 (3)
$\mathrm{D} 2 \mathrm{C}-\mathrm{O} 2-\mathrm{D} 2 \mathrm{~A}$	104 (5)	D6C-O6-D6A	103 (2)
$\mathrm{D} 2 \mathrm{~B}-\mathrm{O} 2-\mathrm{D} 2 \mathrm{~A}$	113 (2)	D6D-O6-D6A	124 (10)
$\mathrm{D} 2 \mathrm{C}-\mathrm{O} 2-\mathrm{Na} 1^{\text {vi }}$	92 (6)	D7D-07-D7B	101 (8)
$\mathrm{D} 2 \mathrm{~B}-\mathrm{O} 2-\mathrm{Na} 1^{\text {vi }}$	117.8 (15)	D7D-07-D7C	103 (7)
$\mathrm{D} 2 \mathrm{~A}-\mathrm{O} 2-\mathrm{Na} 1^{\text {vi }}$	104 (2)	D7B-O7-D7C	128 (4)
D3 ${ }^{\text {v- O }} 3$ - D3	104 (3)	D7D-07-D7A	111 (5)
$\mathrm{D} 3-\mathrm{O} 3-\mathrm{Na} 2$	106.4 (14)	D7B-O7-D7A	109 (3)
D4A-O4-D4C	98 (3)	D7C-O7-D7A	104 (4)
D4A-O4-D4B	109 (3)	D8B-O8-D8B ${ }^{\text {v }}$	88 (5)
D4C-O4-D4B	129 (3)	D8B-O8-D8A	101 (3)
D4A-O4-Na2 ${ }^{\text {vi }}$	116.6 (16)		

Symmetry code(s): (i) $x-1, y, z$; (ii) $x-1,-y, z$; (iii) $-x+1, y,-z$; (iv) $-x+1, y,-z+1$; (v) $x,-y, z$; (vi) $x+1, y, z$.

