

Volume 79 (2023)

Supporting information for article:

Exploring the thermal behaviour of the solvated structures of Nifedipine

Eleanor C. L. Jones, Kate E. Goldsmith, Martin R. Ward, Luis M. Bimbo and Iain D.H. Oswald

	α (Form A)	0 (Earm C)	β'	γ	γ'	δ
Form	100 K(Gui <i>et</i>	р (Form C) 100 К	338 K(Gui <i>et</i>	100 K(Gui <i>et</i>	250 K(Gui <i>et</i>	100 K(Gui <i>et</i>
	al., 2020)	100 10	al., 2020)	al., 2020)	al., 2020)	al., 2020)
Refcode ^a	BICCIZ07	BICCIZ02	BICCIZ08	BICCIZ09	BICCIZ11	BICCIZ12
a (Å)	10.567(3)	9.6661(6)	9.696(2)	19.065(6)	11.435(4)	11.905(4)
b (Å)	10.408(3)	13.7006(8)	14.231(3)	11.506(4)	12.244(4)	10.908(3)
c (Å)	14.788(4)	14.1184(9)	14.463(3)	15.109(5)	12.327(4)	12.779(4)
α (°)	90	61.028(3)	61.90(3)	90	75.535(16)	90
β (°)	95.028(12)	79.631(4)	80.40(1)	108.962(18)	89.055(16)	106.980(9)
γ (°)	90	81.904(4)	81.80(1)	90	84.774(19)	90
Volume (ų)	1620.2(8)	1605.89(17)	1731.050	3134.7(18)	1664.2(10)	1587.2(8)
Space Group	<i>P</i> 2 ₁ / <i>c</i>	P≧	₽È	P2 ₁ /c	P≧	P2 ₁ /n
Space $P_{2_1/C}$ p_{2_2} p_{2_2} $P_{2_1/C}$ p_{2_2} $P_{2_1/N}$ Group						

Table S1 Unit cell parameters of six identified polymorphs of NIF.

Taken from the CSD. (Groom et al., 2016)

Solvents used in the solvent screen study of NIF. Table S2

Solvent	Grade	Supplier
Acetonitrile	≥99.9%	Fisher
Butyl acetate	≥99.5%	Sigma Aldrich
1,3-dioxane	98.0%	Alfa Aesar
1,4-dioxane	≥99.0%	Alfa Aesar
Dimethylacetamide	≥99.5%	Sigma Aldrich
Dimethylformamide (anhydrous)	99.8%	Sigma Aldrich
Dimethyl sulfoxide	≥99.9%	Sigma Aldrich
Ethanol	99.8%	Fisher

Ethyl Acetate	≥ 99.7%	Sigma Aldrich
Heptane	99.0%	Honeywell
Hexane	≥97.0%	Sigma Aldrich
2-methyltetrahydrofuran	99.0%	Alfa Aesar
Methanol	HPLC	VWR
Morpholine	99.0%	Alfa Aesar
Nitromethane	For synthesis	Merck
2-propanol	ACS Reagent	VWR
Pyridine	≥ 99.0%	Honeywell
Tetrahydrofuran	HPLC ≥ 99.9 %	Honeywell

	NIF_14DIO	NIF_MORPH	NIF_THF	NIF_PYRI
Chemical	$C_{17}H_{18}N_2O_6 \cdot C_2H_4O$	$2(C_{17}H_{18}N_2O_6)\cdot C_4H_9NO$	$2(C_{17}H_{18}N_2O_6)\cdot C_4H_8O$	$C_{17}H_{18}N_2O_6 \cdot C_5H_5N$
formula				
M _r	390.38	779.79	764.77	425.43
Crystal	Triclinic D	Triclinic D	Monoclinic P2 ₁ /c	Monoclinic P2
system space	fincinite, r		Wondennie, i 2 ₁ /e	
group				
group				
Temperature	100	100	100	100
(K)				
a, b, c (Å)	7.5604 (1),	7.5423 (6), 11.1513	13.9233 (14), 9.1421	9.4363 (10),
	11.1362 (1),	(9), 11.8923 (9)	(9), 14.5374 (15)	14.4247 (14),
	11.8563 (1)			15.1387 (15)
α, β, γ (°)	73.606 (1), 73.185	73.997 (2), 73.957 (2),	96.280 (4)	96.160 (3)
	(1), 75.643 (1)	75.253 (2)		
17 (Å 3)		006 62 (12)	1920 2 (2)	2049.7 (4)
V (A ²)	901.54 (2)	906.63 (12)	1839.3 (3)	2048.7 (4)
Ζ	2	1	2	4
Radiation	Cu Ka	Mo Ka	Mo Ka	Mo Ka
type				
μ (mm ⁻¹)	0.93	0.11	0.11	0.10
Crystal size	0.4 × 0.35 × 0.25	0.28 × 0.26 × 0.09	0.32 × 0.13 × 0.07	0.32 × 0.24 × 0.09
(mm)				
Diffractomete	XtaLAB Synergy,	Bruker APEX-II CCD	Bruker APEX-II CCD	Bruker APEX-II
r	Single source at			CCD
	home/near,			
	HyPix3000			
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan
correction	CrysAlis PRO	SADABS2016/2	SADABS2016/2	SADABS2016/2
	1.171.41.99a	(Bruker,2016/2) was	(Bruker,2016/2) was	(Bruker,2016/2)
	(Rigaku Oxford	used for absorption	used for absorption	was used for
	Diffraction, 2021)	correction. wR2(int)	correction. wR2(int)	absorption
	Empirical	was 0.0990 before and	was 0.1461 before	correction.
	absorption	0.0322 after correction.	and 0.0550 after	wR2(int) was
	correction using	The Ratio of minimum	correction. The Ratio	0.0794 before and

Table 55 Crystanographic data tables of MrF Solvates

	spherical	to maximum	of minimum to	0.0352 after
	harmonics	transmission is 0.9760	maximum	correction The
	implemented in	The 1/2 correction	transmission is	Patio of minimum
		factor is Not present	0.9622 The $1/2$	to maximum
	SCALE3	factor is not present.	0.8622. The 1/2	
	ABSPACK scaling		correction factor is	transmission is
	algorithm.		Not present.	0.9609. The l/2
				correction factor is
				Not present.
T_{\min}, T_{\max}	0.114, 1.000	0.728, 0.746	0.643, 0.746	0.717, 0.746
No. of	21224, 3552, 3543	28798, 4676, 4393	73490, 5614, 4987	54023, 11054,
measured,				10804
independent				
and				
observed [1 >				
2g(D]				
20(1)]				
reflections				
R _{int}	0.027	0.020	0.036	0.020
$(\sin \theta / \lambda)_{max}$ (Å ⁻	0.619	0.685	0.715	0.706
1)				
$R[F^2 >$	0.036, 0.095, 1.07	0.035, 0.095, 0.97	0.037, 0.102, 1.03	0.029, 0.079, 1.04
$2\sigma(F^2)],$				
$wR(F^2)$, S				
No. of	3552	4676	5614	11054
reflections				
No. of	257	270	275	567
parameters				
No. of	0	6	5	1
		0		
restraints				
H-atom	H-atom parameters	H atoms treated by a	H-atom parameters	H-atom parameters
treatment	constrained	mixture of independent	constrained	constrained
		and constrained		
		refinement		
$\Delta \rho_{max}, \Delta \rho_{min}$ (e	0.29, -0.31	0.430.26	0.45, -0.32	0.30, -0.17
Å ⁻³)				
Absolute	N/A	N/A	N/A	Flack x determined
structure				using 4948

				quotients [(I+)-
				(I-)]/[(I+)+(I-)]
				(Parsons, Flack
				and Wagner, Acta
				Cryst. B69 (2013)
				249-259).
Absolute	N/A	N/A	N/A	0.20 (9)
structure				
parameter				

	NIF_DMSO	NIF_DMA	NIF_DMF	NIF_MeOH
Chemical	C2H6OS·C17H18N2	C17H18N2O6·C4H9	C17H18N2O6·C3H7	C17H18N2O6·CH
formula	O6	NO	NO	40
Chemical	424.46	433.45	419.43	378.37
formula				
Crystal	Triclinic, P [≒]	Triclinic, P [≒]	Triclinic, P [≒]	Monoclinic, P21/c
system,				
space group				
Temperature	100	173	100	100
(K)				
a, b, c (Å)	7.9036 (10), 11.8798	7.6638 (10), 11.6006	7.4526 (13), 11.647	15.6780 (15),
	(15), 11.9713 (15)	(16), 13.9001 (19)	(2), 13.559 (2)	14.4816 (14),
				8.0842 (8)
α, β, γ (°)	67.099 (3), 78.341	65.688 (3), 76.979	70.741 (5), 97.785	104.112 (4)
	(3), 79.126 (4)	(3), 92.932 (3)	(5), 73.470 (5)	
V (Å ³)	1006.5 (2)	1082.7 (3)	1030.4 (3)	1780.1 (3)
Ζ	2	2	2	4
Radiation	Mo Ka	Mo Ka	Mo Ka	Mo Ka
type				
μ (mm ⁻¹)	0.21	0.10	0.10	0.11
Crystal size	$0.16 \times 0.05 \times 0.01$	$0.4 \times 0.25 \times 0.11$	$0.34 \times 0.15 \times 0.08$	$0.40 \times 0.23 \times 0.08$
(mm)				
Diffractomet	Bruker APEX-II	Bruker APEX-II	Bruker APEX-II	Bruker APEX-II
er	CCD	CCD	CCD	CCD
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan
correction	SADABS2016/2	SADABS2016/2	SADABS2016/2	SADABS2016/2
	(Bruker,2016/2) was	(Bruker,2016/2) was	(Bruker,2016/2) was	(Bruker,2016/2)
	used for absorption	used for absorption	used for absorption	was used for
	correction. wR2(int)	correction. wR2(int)	correction. wR2(int)	absorption
	was 0.1110 before	was 0.1470 before	was 0.1093 before	correction.
	and 0.0630 after	and 0.0676 after	and 0.0513 after	wR2(int) was

Table S4Contd. Crystallographic data tables of NIF solvates.

	correction. The Ratio	correction. The Ratio	correction. The Ratio	0.1274 before and
	of minimum to	of minimum to	of minimum to	0.0492 after
	maximum	maximum	maximum	correction. The
	transmission is	transmission is	transmission is	Ratio of minimum
	0.7017. The l/2	0.8046. The l/2	0.9140. The l/2	to maximum
	correction factor is	correction factor is	correction factor is	transmission is
	Not present.	Not present.	Not present.	0.9302. The l/2
				correction factor is
				Not present.
T_{\min}, T_{\max}	0.524, 0.746	0.600, 0.746	0.682, 0.746	0.694, 0.746
No. of	13422 5156 3963	36418 6605 5213	35697 5888 5050	101200 5484
mossured	13422, 3130, 3303	30410, 0003, 3213	33037, 3000, 3030	5006
independent				5000
and				
observed []				
$> 2\sigma(D)$				
reflections				
R _{int}	0.054	0.043	0.038	0.032
$(\sin \theta / \lambda)_{max}$	0.705	0.715	0.718	0.717
(Å-1)				
$R[F^2 >$	0.045, 0.110, 1.02	0.045, 0.130, 1.04	0.037, 0.098, 1.03	0.037, 0.105, 1.03
$2\sigma(F^2)],$				
$wR(F^2), S$				
No. of	5156	6605	5888	5484
reflections				
	260	200	250	254
No. of	269	309	278	254
parameters				
No. of	0	13	0	0
restraints				
H-atom	H-atom parameters	H-atom parameters	H-atom parameters	H atoms treated by
treatment	constrained	constrained	constrained	a mixture of
				independent and
				constrained
				refinement
$\Delta \rho_{max}, \Delta \rho_{min}$	0.38, -0.56	0.31, -0.23	0.40, -0.27	0.46, -0.39
(e Å ⁻³)				

Computer programs: SAINT,(Bruker, 2018) *CrysAlis PRO* 1.171.41.99a, (Rigaku Oxford Diffraction, 2021)SHELXT,(Sheldrick, 2015*b*) SHELXL,(Sheldrick, 2015*a*) Olex2 1.3 (Dolomanov *et al.*, 2009)

Figure S1 X-ray diffraction pattern of solid material from slurring experiments using: (a) acetonitrile, (b) butyl acetate, (c) 1,3-dioxane, (d) ethanol, (e) ethyl acetate, (f) heptane, (g) hexane, (h) 2-methyltetrahydrofuran, (i) nitromethane, (j) 2-propanol, (k) water and (l) α-NIF as supplied from AlfaAesar.

Figure S2 Thermal data of N_{14DIO} capturing the desolvation to the α -form of NIF a) Surface plot of VT-XRPD data from 343 K to 433 K. b) Unit cell parameters from Rietveld refinements of each XRPD pattern. Closed symbols represent data for the solvate, open symbols represent data for desolvated structure. c) DSC and TGA trace for N_{14DIO} . d) XRPD pattern for the 1,4-dioxane solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern showing that they are in agreement. The calculated reflections are based on the single-crystal data collected for N_{14DIO} .

Figure S3 Thermal data of N_{MORPH} capturing the desolvation to the α -form of NIF a) Surface plot of VT-XRPD data from 343 K to 433 K. b) Unit cell parameters from Rietveld refinements of each XRPD pattern. Closed symbols represent data for the solvate; open symbols represent data for desolvated structure. c) DSC and TGA trace for N_{MORPH} . d) XRPD pattern for the morpholine solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern showing that they are in agreement. The calculated reflections are based on the single-crystal data collected for N_{MORPH} .

Figure S4 Thermal data of NDMSO capturing the desolvation to α-NIF a) Surface plot of VT-XRPD data from 293 K to 383 K. b) Unit cell parameters from Rietveld refinements of each XRPD pattern. The data could only be fitted to a temperature of 393 K. Closed symbols represent data for the solvate; open symbols represent data for desolvated structure. c) DSC and TGA trace for NDMSO. No prominent melting event is witnessed. d) XRPD pattern for the DMSO solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern. The calculated reflections are based on the single-crystal data collected for NDMSO.

Figure S5 Thermal data of α -N_{DMA} capturing the desolvation to α -NIF a) Surface plot of VT-XRPD data from 293 K to 403 K. Melt of the sample is captured from 388 K. b) Unit cell parameters from Rietveld refinements of each XRPD pattern. The data could only be fitted to a temperature of 413 K. Closed symbols represent data for α -N_{DMA}; open symbols represent data for β -N_{DMA} structure. c) DSC and TGA trace for N_{DMA}. d) XRPD pattern for the DMA solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern. The calculated reflections are based on the single-crystal data collected for α -N_{DMA}.

Figure S6 a) XRPD of NDMF solvate from 4 to 35°, 20. (i) Simulated powder pattern from SCdata. VT patterns at (ii) 293 K; (iii) 353 K and (iv) 358 K. The latter temperatures show the start of desolvation to α -NIF. (v) Simulated powder pattern of α -NIF from SC-data collected at 297 K and (vi) Powder pattern of β -NIF collected at 296 K (BICCIZ03). b) Expanded view of Figure a, highlighting the region where a form other than α -NIF appears during desolvation and 353 and 358K. Asterisks indicate reflections that might correspond to Form β -NIF but that are significantly shifted in 2-theta.

Figure S7 Thermal data of N_{THF} capturing the desolvation to the α-form of NIF a) Surface plot of VT-XRPD data from 313 K to 408 K. b) Unit cell parameters from Rietveld refinements of each XRPD pattern. Closed symbols represent data for the solvate; open symbols represent data for desolvated structure. c) DSC and TGA trace for N_{THF}. d) XRPD pattern for the THF solvate collected

at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern showing that they are in agreement. The calculated reflections are based on the single-crystal data collected for N_{THF}. The BFDH morphology for NTHF along e) a-axis and f) b-axis indicating the placement of the THF molecules with respect to the largest face of the crystal. The location of the THF molecules facilitates the loss on heating.

Thermal data of N_{PYRI} capturing the desolvation to the α -form of NIF a) Surface plot of Figure S8 VT-XRPD data from 293 K to 383 K. b) Unit cell parameters from Pawley refinements of each XRPD pattern. Closed symbols represent data for the solvate; open symbols represent data for desolvated structure. c) DSC and TGA trace for N_{PYRI}. d) XRPD pattern for the pyridine solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern. The calculated reflections are based on the single-crystal data collected for N_{PYRI} and NIF α -form.

Figure S9 Thermal data of N_{MeOH} capturing the desolvation to α -NIF a) Surface plot of VT-XRPD data from 293 K to 383 K. b) Unit cell parameters from Pawley refinements of each XRPD pattern. Closed symbols represent data for the solvate; open symbols represent data for desolvated structure. c) DSC and TGA trace for N_{MeOH} . d) XRPD pattern for the DMF solvate collected at 293 K. The experimental data is shown in blue, whilst the calculated profile is shown in red. The difference profile is displayed underneath the diffraction pattern. The calculated reflections are based on the single-crystal data collected for N_{MeOH} . The solvate is only formed from slow evaporation hence the single-crystals were ground for both VT-XRPD and STA. The pulverisation of single-crystals may have induced mechanical desolvation as there was α -NIF present in all of the diffraction patterns as small trace quantities.

Figure S10 Interactions between NIF and solvents: a) 1,4-dioxane; b) morpholine; c) DMSO; d) DMA (which shows disorder); e) DMF; f) THF (note hydrogen bonding is absent between solvent and

NIF molecule); g) pyridine and h) methanol. Labelled atoms show those which are involved in hydrogen bonds.