

Volume 79 (2023)

Supporting information for article:

Competition of interactions and a new high-temperature phase of selenourea

Kinga Roszak and Andrzej Katrusiak

S1. Tables

		phase α				
Temperature (K)		110	130	150	170	190
Formula weight		123.02	123.02	123.02	123.02	123.02
Wavelength (Å)		1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system		trigonal	trigonal	trigonal	trigonal	trigonal
Space group		<i>P</i> 3 ₁				
Unit cell dimen-	а	15.1354(1)	15.14832(11)	15.16245(9)	15.17648(10)	15.1910(1)
sions (A,°)	b	15.1354(1)	15.14832(11)	15.16245(9)	15.17648(10)	15.1910(1)
	с	12.9308(1)	12.93947(13)	12.94774(1)	12.95625(12)	12.9669(1)
	α	90	90	90	90	90
	β	90	90	90	90	90
	γ	120	120	120	120	120
Volume (Å ³)		2565.33(4)	2571.44(5)	2577.89(4)	2584.35(4)	2591.43(4)
Z/Z'		27/9	27/9	27/9	27/9	27/9
Calculated density (g	gcm ⁻³)	2.150	2.145	2.140	2.134	2.128
Absorption coefficie (mm-1)	ent	11.513	11.485	11.457	11.428	11.397
F(000)		1566	1566	1566	1566	1566
Crystal size (mm)		0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05
2θ-range for data col (°)	llection	6.744 to 144.822	6.738 to 144.804	6.732 to 144.704	6.726 to 144.414	6.718 to 144.91
Min/max indices: h,	k, 1	-18/16, -18/17,	-18/17, -18/18,	-16/18, -17/18,	-18/17, -18/18,	-18/17, -18/18,
Reflect. Collected/un	nique	6546/3849	6643/3884	7392/4445	7405/4459	6693/3945
Rint		0.0395	0.0322	0.0190	0.0195	0.0372
Data/restrains/parameters		3849/1/325	3884/1/326	4445/1/326	4459/1/326	3945/1/326
Goodness-of-fit on F2		1.123	1.118	1.126	1.106	1.084
Final R1/wR2 (I>20)	1)	0.0370/0.0995	0.0360/0.0979	0.0234/0.0650	0.0251/0.0686	0.0334/0.0921
R1/wR2 (all data)		0.0371/0.0996	0.0361/0.0980	0.0235/0.0650	0.0252/0.0687	0.0335/0.0922

Table S1Crystallographic data of selenourea phases α and γ as a function of temperature.

		phase α				
Temperature (K)		210	230	250	270	290
Formula weight		123.02	123.02	123.02	123.02	123.02
Wavelength (Å)		1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system		trigonal	trigonal	trigonal	trigonal	trigonal
Space group		<i>P</i> 3 ₁				
Unit cell dimen-	а	15.2065(1)	15.2222(1)	15.23887(11)	15.2541(1)	15.2714(1)
sions (A,°)	b	15.2065(1)	15.2222(1)	15.23887(11)	15.2541(1)	15.2714(1)
	С	12.9770(1)	12.9882(1)	12.99870(13)	13.0096(2)	13.0219(2)
	α	90	90	90	90	90
	β	90	90	90	90	90
	γ	120	120	120	120	120
Volume (Å ³)		2598.74(4)	2606.36(4)	2614.18(5)	2621.61(5)	2630.04(5)
Z/Z'		27/9	27/9	27/9	27/9	27/9
Calculated density (g	gcm ⁻³)	2.122	2.116	2.110	2.104	2.097
Absorption coefficie (mm-1)	ent	11.365	11.332	11.298	11.266	11.229
F(000)		1566	1566	1566	1566	1566
Crystal size (mm)		0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05
2θ-range for data col (°)	llection	6.712 to 144.914	6.706 to 144.576	6.698 to 144.696	6.692 to 144.616	6.684 to 144.898
Min/max indices: h,	k, l	-18/16, -18/18, -14/13	-18/16, -18/18, -14/13	-18/18, -18/16, -14/13	-18/18, -18/16, -14/13	-12/15, -18/11, -13/11
Reflect. Collected/ur	nique	6773/3970	6843/3976	6882/4004	6907/4032	3810/2709
Rint		0.0370	0.0312	0.0365	0.0358	0.0298
Data/restrains/parameters		3970/1/326	3976/1/326	4004/1/326	4032/1/326	2709/1/326
Goodness-of-fit on F2		1.127	1.089	1.089	1.042	1.059
Final R1/wR2 (I>2o)	1)	0.0328/0.0949	0.0332/0.0900	0.0325/0.0897	0.0326/0.0894	0.0351/0.1011
R1/wR2 (all data)		0.0330/0.0950	0.0333/0.0901	0.0327/0.0899	0.0328/0.0896	0.0355/0.1015

Table S1 Continued. Crystallographic data of selenourea phases α and γ as a function of temperature.

		phase α				
Temperature (K)		293	303	313	323	333
Formula weight		123.02	123.02	123.02	123.02	123.02
Wavelength (Å)		0.71073	1.54184	0.71073	0.71073	0.71073
Crystal system		trigonal	trigonal	trigonal	trigonal	trigonal
Space group		<i>P</i> 3 ₁				
Unit cell dimen-	а	15.2757(6)	15.2813(2)	15.2940(5)	15.3052(6)	15.3150(6)
sions (A,°)	b	15.2757(6)	15.2813(2)	15.2940(5)	15.3052(6)	15.3150(6)
	с	13.0230(5)	13.0272(2)	13.0350(4)	13.0398(4)	13.0481(5)
	α	90	90	90	90	90
	β	90	90	90	90	90
	γ	120	120	120	120	120
Volume (Å ³)	1	2631.7(2)	2634.52(8)	2640.48(19)	2645.33(2)	2650.4(2)
Z/Z'		27/9	27/9	27/9	27/9	27/9
Calculated density (g	gcm ⁻³)	2.113	2.094	2.089	2.090	2.086
Absorption coefficie (mm-1)	nt	9.480	11.210	9.370	9.375	9.357
F(000)		1566	1566	1566	1566	1566
Crystal size (mm)		0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05
2θ-range for data col (°)	llection	6.178 to 58.112	6.68 to 144.332	6.152 to 57.988	6.152 to 58.014	6.148 to 57.972
Min/max indices: h,	k, 1	-18/20, -19/19, -17/16	-15/16, -18/14, -15/11	-20/20, -19/19, -17/17	-19/19, -20/20, -17/17	-20/20, -19/19, -17/17
Reflect. Collected/u	nique	18848/7257	7938/3791	28408/8231	28481/8247	28577/8258
Rint		0.0348	0.0327	0.0411	0.0391	0.0405
Data/restrains/parameters		7257/1/326	3791/1/326	8231/50/326	8247/107/326	8258/80/326
Goodness-of-fit on F2		1.092	1.074	1.081	1.047	1.055
Final R1/wR2 (I>20	1)	0.0805/0.1312	0.0269/0.0745	0.0805/0.1309	0.0982/0.1626	0.0781/0.1341
R1/wR2 (all data)		0.1119/0.1428	0.0271/0.0749	0.1168/0.1436	0.1385/0.1788	0.1206/0.1493

Table S1 Continued. Crystallographic data of selenourea phases α and γ as a function of temperature.

		phase α	phase α	phase α	phase α
Temperature (K)		343	353	363	373
Formula weight		123.02	123.02	123.02	123.02
Wavelength (Å)		0.71073	0.71073	0.71073	0.71073
Crystal system		trigonal	trigonal	trigonal	trigonal
Space group		<i>P</i> 3 ₁	<i>P</i> 3 ₁	<i>P</i> 3 ₁	<i>P</i> 3 ₁
Unit cell dimen-	а	15.3269(7)	15.3389(7)	15.3505(7)	15.3619(8)
sions (A,°)	b	15.3269(7)	15.3389(7)	15.3505(7)	15.3619(8)
	С	13.0553(5)	13.0642(6)	13.0706(6)	13.0768(6)
	α	90	90	90	90
	β	90	90	90	90
	γ	120	120	120	120
Volume (Å ³)		2655.99(3)	2662.0(3)	2667.3(3)	2672.5(3)
Z/Z'		27/9	27/9	27/9	27/9
Calculated density (g	gcm ⁻³)	2.082	2.077	2.073	2.064
Absorption coefficie (mm-1)	nt	9.337	9.316	9.298	9.257
F(000)		1566	1566	1566	1566
Crystal size (mm)		0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05	0.25.0.10.0.05
2θ-range for data col (°)	lection	6.144 to 57.936	6.138 to 58.076	6.134 to 58.04	6.124 to 57.956
Min/max indices: h,	k, 1	-20/20, -19/19, -17/17	-20/20, -19/19, -17/17	-20/20, -19/19, -17/17	-20/20, -19/19, -17/17
Reflect. Collected/ur	nique	28565/8276	28618/8281	28681/8308	28736/8325
Rint		0.0410	0.0430	0.0438	0.0452
Data/restrains/parameters		8276/75/326	8281/61/326	8308/74/326	8325/93/326
Goodness-of-fit on F2		1.061	1.053	1.039	1.027
Final R1/wR2 (I>201)	0.0782/0.1241	0.0757/0.1271	0.0754/0.1379	0.0746/0.1443
R1/wR2 (all data)		0.1235/0.1387	0.1260/0.1446	0.1310/0.1576	0.1364/0.1672

Table S1 Continued. Crystallographic data of selenourea phases α and γ as a function of temperature.

		phase γ	phase γ
Temperature (K)		383	393
Formula weight		123.02	123.02
Wavelength (Å)		0.71073	0.71073
Crystal system		trigonal	trigonal
Space group		<i>P</i> 3 ₁ 21	<i>P</i> 3 ₁ 21
Unit cell dimensions a		8.8551(4)	8.8607(4)
(A, ¹)	b	8.8551(4)	8.8607(4)
	С	13.0694(7)	13.0716(7)
	α	90	90
	β	90	90
	γ	120	120
Volume (Å ³)		887.50(8)	888.78(9)
Z/Z'		9/3	9/3
Calculated density (gcr	n ⁻³)	2.072	2.069
Absorption coefficient (mm-1)		9.292	9.279
× ,			
F(000)		522	522
F(000) Crystal size (mm)		522 0.25·0.10·0.05	522 0.25·0.10·0.05
F(000) Crystal size (mm) 2θ-range for data collection (°)	c-	522 0.25·0.10·0.05 6.16 to 57.724	522 0.25·0.10·0.05 6.156 to 57.71
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k,	c-	522 0.25·0.10·0.05 6.16 to 57.724 -11/11, -11/11, -17/16	522 0.25·0.10·0.05 6.156 to 57.71 -11/11, -11/11, -17/16
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k, Reflect. Collected/uniq	c- 1 Jue	522 0.25·0.10·0.05 6.16 to 57.724 -11/11, -11/11, -17/16 6352/1414	522 0.25·0.10·0.05 6.156 to 57.71 -11/11, -11/11, -17/16 6391/1422
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k, Reflect. Collected/uniq Rint	c- 1 Jue	522 0.25·0.10·0.05 6.16 to 57.724 -11/11, -11/11, -17/16 6352/1414 0.0243	522 0.25.0.10.0.05 6.156 to 57.71 -11/11, -11/11, -17/16 6391/1422 0.0244
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k, Reflect. Collected/uniq Rint Data/restrains/parameter	c- 1 Jue ers	522 0.25.0.10.0.05 6.16 to 57.724 -11/11, -11/11, -17/16 6352/1414 0.0243 1414/0/57	522 0.25.0.10.0.05 6.156 to 57.71 -11/11, -11/11, -17/16 6391/1422 0.0244 1422/0/57
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k, Reflect. Collected/uniq Rint Data/restrains/parameter Goodness-of-fit on F2	c- 1 Jue ers	522 0.25.0.10.0.05 6.16 to 57.724 -11/11, -11/11, -17/16 6352/1414 0.0243 1414/0/57 1.061	522 0.25.0.10.0.05 6.156 to 57.71 -11/11, -11/11, -17/16 6391/1422 0.0244 1422/0/57 1.024
F(000) Crystal size (mm) 2θ-range for data collection (°) Min/max indices: h, k, Reflect. Collected/uniq Rint Data/restrains/parameter Goodness-of-fit on F2 Final <i>R1/wR2</i> (I>2σ1)	c- 1 uue ers	522 0.25.0.10.0.05 6.16 to 57.724 -11/11, -11/11, -17/16 6352/1414 0.0243 1414/0/57 1.061 0.0285/0.0547	522 0.25.0.10.0.05 6.156 to 57.71 -11/11, -11/11, -17/16 6391/1422 0.0244 1422/0/57 1.024 0.0294/0.0542

Table S1 Continued. Crystallographic data of selenourea phases α and γ as a function of temperature.

	H11B····Se2 ⁱ	N11····Se2 ⁱ	N11H11B ····Se2 ⁱ	H11A···· Se7 ⁱⁱ	N11···· Se7 ⁱⁱ	N11H11A···· Se7 ⁱⁱ
373	2.7880	3.581(2)	160.62	3.1281	3.790(3)	136.67
363	2.7906	3.581(1)	160.13	3.1280	3.797(2)	136.32
353	2.7819	3.591(1)	159.61	3.1255	3.796(2)	136.54
343	2.7894	3.580(2)	160.20	3.1240	3.794(2)	136.48
333	2.7767	3.582(1)	161.36	3.1277	3.797(1)	137.50
323	2.7619	3.575(4)	158.19	3.1218	3.805(3)	133.45
313	2.7791	3.587(1)	159.35	3.1225	3.798(2)	134.84
303	2.7690	3.5827(5)	160.91	3.1226	3.8145(5)	135.57
293	2.7471	3.579(2)	160.38	3.1226	3.798(2)	138.32
290	2.7662	3.5907(8)	161.10	3.1290	3.8117(7)	135.65
270	2.7658	3.5927(5)	161.77	3.1269	3.8008(7)	136.92
250	2.7605	3.5896(5)	162.39	3.1243	3.8018(5)	137.35
230	2.7609	3.5881(6)	161.84	3.1260	3.7933(5)	136.16
210	2.7628	3.5901(6)	161.86	3.1153	3.7890(6)	136.89
190	2.7563	3.5832(5)	161.77	3.1204	3.7891(5)	136.30
170	2.7464	3.5743(4)	162.02	3.1224	3.7904(4)	136.22
150	2.7486	3.5741(4)	161.37	3.1227	3.7855(4)	135.63
130	2.7441	3.5716(6)	161.90	3.1115	3.7764(6)	135.85
100	2.7407	3.5690(6)	161.53	3.1024	3.7703(6)	135.99

Table S2The distances of NH··· Se and NH··· N in selenourea phases α and γ .

(i) = y-x, 1-x, 0.667+z; (ii) = x, y, -1+z

	H12B····Se3	N12···Se3	N12H12B····Se3	H12A····Se7 ⁱⁱ	N12····Se7 ⁱⁱ	N12H12A····Se7 ⁱⁱ
373	2.7899	3.636(2)	164.63	3.0055	3.702(5)	139.48
363	2.7848	3.639(3)	163.93	3.0161	3.711(5)	139.32
353	2.7805	3.632(3)	163.29	3.0130	3.713(4)	140.17
343	2.7856	3.631(2)	164.22	3.0131	3.713(4)	138.78
333	2.7890	3.630(6)	165.58	2.9975	3.718(5)	139.97
323	2.7936	3.630(3)	166.35	3.0067	3.712(2)	138.11
313	2.7992	3.638(3)	165.35	3.0136	3.706(5)	137.79
303	2.7890	3.6307(5)	166.48	3.0189	3.7291(5)	137.57
293	2.7860	3.637(3)	165.85	3.0200	3.719(5)	139.48
290	2.7916	3.6323(9)	166.11	3.0125	3.7284(9)	137.06
270	2.7942	3.6342(6)	165.88	3.0189	3.7105(6)	138.93
250	2.7906	3.6300(6)	165.64	3.0148	3.7098(6)	139.34
230	2.7815	3.6218(6)	165.94	3.0251	3.7090(6)	137.98
210	2.7728	3.6118(6)	165.49	3.0132	3.7033(6)	138.73
190	2.7751	3.6148(5)	165.73	3.0088	3.6948(6)	138.22
170	2.7618	3.6015(4)	165.74	3.0061	3.6931(5)	138.33
150	2.7608	3.6006(5)	165.78	3.0085	3.6893(5)	137.59
130	2.7671	3.6073(6)	165.93	2.9944	3.6771(7)	137.80
110	2.7665	3.6055(6)	165.50	2.9882	3.6729(6)	138.03

(ii) = x, y, -1+z

	H21B····Se1 ⁱⁱ	N21····Se1 ⁱⁱ	H21BN21···Se1 ⁱⁱ	H21A…Se5 ⁱⁱⁱ	N21····Se5 ⁱⁱⁱ	H21AN21···Se5 ⁱⁱⁱ
373	2.7334	3.605(2)	166.45	2.9101	3.736(5)	144.71
363	2.7341	3.602(2)	165.37	2.9121	3.750(3)	143.79
353	2.7363	3.601(2)	164.19	2.9121	3.744(8)	143.04
343	2.7384	3.592(3)	167.17	2.9187	3.740(6)	147.38
333	2.7398	3.586(8)	168.18	2.9139	3.747(2)	142.35
323	2.7348	3.585(3)	170.23	2.9120	3.758(6)	147.82
313	2.7359	3.581(2)	167.70	2.9164	3.746(2)	145.44
303	2.7340	3.5785(5)	167.53	2.9188	3.7423(5)	147.56
293	2.7199	3.577(2)	166.96	2.9190	3.738(2)	146.63
290	2.7377	3.5817(8)	167.35	2.9183	3.7387(8)	147.81
270	2.7315	3.5779(6)	168.28	2.9172	3.7316(6)	148.43
250	2.7321	3.5784(6)	168.30	2.9128	3.7238(6)	148.58
230	2.7263	3.5733(6)	168.59	2.9159	3.7166(6)	148.54
210	2.7132	3.5603(7)	168.60	2.9130	3.7150(6)	148.74
190	2.7128	3.5600(6)	168.66	2.9140	3.7055(6)	148.64
170	2.7140	3.5609(5)	168.49	2.9166	3.6987(4)	148.72
150	2.7080	3.5555(5)	168.77	2.9188	3.6929(5)	149.05
130	2.7108	3.5593(6)	169.28	2.9138	3.6831(6)	149.88
110	2.7047	3.5532(6)	169.22	2.9106	3.6793(6)	149.78

(ii) = x,y,-1+z; (iii) = x,y,1+z

	H22B····Se3	N22Se3	H22BN22····Se3	H22A····Se5 ⁱⁱⁱ	N22····Se5 ⁱⁱⁱ	H22AN22····Se5 ⁱⁱⁱ
373	2.7277	3.573(2)	173.20	2.7297	3.573(2)	145.76
363	2.7295	3.571(3)	170.64	2.7269	3.571(3)	144.35
353	2.7234	3.577(3)	171.97	2.7267	3.565(3)	143.48
343	2.7276	3.570(2)	171.42	2.7301	3.562(2)	148.63
333	2.7227	3.576(3)	167.35	2.7263	3.568(2)	144.05
323	2.7256	3.579(4)	166.91	2.7207	3.566(4)	150.77
313	2.7203	3.573(5)	166.83	2.7203	3.566(3)	149.48
303	2.7230	3.5862(5)	171.73	2.7217	3.5642(6)	155.93
293	2.7183	3.566(4)	169.68	2.7182	3.507(2)	153.15
290	2.7264	3.578(1)	170.79	2.7253	3.5610(9)	156.60
270	2.7248	3.5762(7)	170.70	2.7294	3.5426(6)	158.28
250	2.7266	3.5772(7)	170.27	2.7167	3.5322(6)	158.81
230	2.7270	3.5758(7)	169.40	2.7099	3.5267(6)	159.09
210	2.7277	3.5763(7)	169.31	2.7051	3.5240(7)	159.61
190	2.7106	3.5567(6)	168.17	2.7085	3.5239(6)	158.77
170	2.7112	3.5575(5)	168.25	2.6928	3.5101(5)	159.23
150	2.7120	3.5577(5)	167.99	2.6879	3.5061(5)	159.42
130	2.6994	3.5442(7)	167.62	2.6862	3.5054(6)	159.66
110	2.6897	3.5338(7)	167.34	2.6876	3.5072(6)	159.76

(iii) = x, +y, 1+z

	H23B····Se2	N23…Se2	H23BN23····Se2	H23A···Se6	N23Se6	N23H23A···Se6
373	2.7993	3.623(6)	158.40	2.9399	3.711(7)	153.82
363	2.7955	3.625(5)	157.51	2.9431	3.716(6)	154.22
353	2.7993	3.625(5)	156.73	2.9428	3.719(5)	154.80
343	2.7992	3.624(5)	156.50	2.9411	3.723(6)	153.88
333	2.8036	3.625(6)	155.79	2.9395	3.719(6)	153.41
323	2.8120	3.619(9)	152.85	2.9492	3.692(2)	155.46
313	2.8109	3.628(5)	154.93	2.9437	3.715(6)	153.80
303	2.8198	3.6253(5)	158.89	2.9300	3.7122(5)	152.15
293	2.8403	3.629(2)	153.22	2.9434	3.700(2)	154.78
290	2.8419	3.6255(9)	156.24	2.9424	3.7047(8)	152.17
270	2.8149	3.6290(6)	158.56	2.9417	3.7153(6)	150.66
250	2.8147	3.6274(6)	158.22	2.9416	3.7133(6)	150.31
230	2.8066	3.6155(6)	157.37	2.9483	3.7171(6)	149.85
210	2.7978	3.6124(7)	158.65	2.9444	3.7109(6)	149.45
190	2.7947	3.6073(6)	158.20	2.9485	3.7104(6)	148.71
170	2.7962	3.6077(5)	157.94	2.9421	3.7063(4)	149.07
150	2.7920	3.6034(5)	157.90	2.9420	3.7038(5)	148.68
130	2.7865	3.5978(6)	157.87	2.9419	3.7015(6)	148.35
110	2.7796	3.5935(7)	158.47	2.9454	3.6999(6)	147.53

Table S2 Continued. The distances of NH···N in selenourea phases α and γ .

	H13B····Se1	N13···Se1	H13BN13····Se1	H13A···Se6	N13…Se6	H13AN13····Se6
373	2.6938	3.513(7)	169.70	2.7138	3.546(8)	163.35
363	2.6909	3.512(7)	170.68	2.7107	3.547(7)	164.51
353	2.6965	3.516(7)	169.62	2.7190	3.553(7)	164.59
343	2.6955	3.514(6)	169.62	2.7130	3.553(7)	162.90
333	2.6870	3.517(7)	169.25	2.7176	3.558(7)	162.68
323	2.6822	3.511(5)	169.20	2.6943	3.543(5)	165.17
313	2.6835	3.514(8)	170.39	2.7128	3.544(9)	163.04
303	2.6835	3.5129(5)	169.65	2.7321	3.5580(5)	161.46
293	2.6691	3.519(2)	170.04	2.7314	3.545(5)	163.61
290	2.6759	3.5141(9)	169.09	2.7268	3.5514(8)	161.11
270	2.6705	3.5191(6)	169.23	2.7322	3.5520(6)	159.88
250	2.6683	3.5172(6)	169.43	2.7250	3.5442(6)	159.70
230	2.6694	3.5203(7)	170.42	2.7153	3.5383(6)	160.66
210	2.6628	3.5130(7)	170.05	2.7202	3.5375(6)	159.23
190	2.6587	3.5089(6)	170.08	2.7153	3.5313(6)	158.92
170	2.6510	3.5029(5)	170.98	2.7059	3.5222(5)	158.96
150	2.6503	3.5021(5)	170.88	2.7021	3.5172(5)	158.68
130	2.6547	3.5083(7)	171.98	2.6896	3.5065(6)	159.12
110	2.6471	3.4998(6)	171.40	2.6992	3.5109(6)	157.90

Table S2 Continued. The distances of NH···N in selenourea phases α and γ .

	H14B····Se6	N14···Se6	H14BN14····Se6	H14A…Se3 ^{iv}	N14····Se3 iv	N14H14A…Se3 ^{iv}
373	2.8600	3.613(7)	154.01	2.8147	3.607(4)	144.07
363	2.8606	3.607(3)	152.83	2.8188	3.608(2)	141.15
353	2.8585	3.615(2)	152.83	2.8191	3.605(2)	143.53
343	2.8618	3.627(2)	153.03	2.8155	3.605(3)	145.27
333	2.8618	3.627(2)	151.40	2.8189	3.602(6)	147.22
323	2.8620	3.628(3)	147.71	2.8242	3.596(5)	146.98
313	2.8617	3.628(3)	149.26	2.8143	3.602(5)	143.54
303	2.8546	3.6413(5)	152.88	2.8248	3.6024(5)	151.22
293	2.8483	3.636(2)	153.03	2.8196	3.605(2)	147.59
290	2.8562	3.635(9)	151.40	2.8298	3.6019(9)	150.27
270	2.8607	3.6378(6)	151.17	2.8078	3.5867(6)	151.44
250	2.8653	3.6347(6)	149.85	2.8083	3.5819(6)	150.50
230	2.8565	3.6271(7)	150.04	2.8073	3.5764(6)	149.73
210	2.8708	3.6383(7)	149.55	2.7902	3.5642(6)	150.53
190	2.8658	3.6315(6)	149.23	2.7883	3.5603(6)	150.20
170	2.8597	3.6267(5)	149.45	2.7767	3.5511(5)	150.59
150	2.8582	3.6231(4)	149.09	2.7743	3.5452(5)	149.98
130	2.8590	3.6241(7)	149.14	2.7585	3.5332(6)	150.62
110	2.8643	3.6265(7)	148.66	2.7494	3.5247(6)	150.71

(iv) = y-x, 1-x, -0.333+z

	H24ASe9 ^v	N24····Se9 ^v	N24H24A…Se9 ^v	H24B····Se5 ^{vi}	N24····Se5 ^{vi}	N24H24B····Se5 ^{vi}
373	2.9746	3.621(2)	141.96	2.7865	3.560(2)	156.09
363	2.9762	3.618(2)	145.52	2.7880	3.562(5)	156.18
353	2.9690	3.616(2)	143.27	2.7839	3.565(6)	155.66
343	2.9735	3.613(2)	141.01	2.7824	3.562(6)	153.28
333	2.9701	3.611(2)	139.78	2.7858	3.569(2)	148.64
323	2.9770	3.625(2)	141.67	2.7854	3.569(3)	144.11
313	2.9771	3.640(2)	142.77	2.7882	3.562(2)	150.50
303	2.9707	3.6354(5)	136.82	2.7838	3.5669(5)	152.14
293	2.9697	3.636(7)	136.77	2.7844	3.574(2)	148.05
290	2.9694	3.6384(9)	137.30	2.7958	3.5741(9)	151.30
270	2.9693	3.6384(6)	136.13	2.7975	3.5700(6)	150.29
250	2.9520	3.6322(6)	137.43	2.8018	3.5719(6)	149.88
230	2.9473	3.6333(6)	138.11	2.7960	3.5693(6)	150.43
210	2.9370	3.6199(6)	137.73	2.7981	3.5647(7)	149.30
190	2.9382	3.6227(6)	137.92	2.8058	3.5704(6)	148.97
170	2.9401	3.6207(4)	137.46	2.8040	3.5678(5)	148.83
150	2.9308	3.6168(4)	138.10	2.7980	3.5678(7)	148.62
130	2.9330	3.6150(6)	137.61	2.8035	3.5635(6)	148.23
110	2.9267	3.6078(6)	137.49	2.8191	3.5737(6)	147.38

 $\overline{(v) = 1-y, 1+x-y, 0.333+z; (vi) = 1-y, x-y, 0.333+z}$

	H15B····Se4 ^{vi}	N15…Se4 ^{vi}	N15H15B····Se4 ^{vi}	H15A····Se8 ^{vii}	N15…Se8 ^{vii}	N15H15A····Se8 ^{vii}
373	2.7933	3.606(5)	160.65	3.0804	3.749(6)	145.18
363	2.7872	3.600(5)	160.78	3.0839	3.753(2)	143.80
353	2.7939	3.606(4)	160.50	3.0857	3.742(5)	143.47
343	2.7715	3.598(5)	161.77	3.0850	3.741(6)	143.46
333	2.7703	3.596(5)	161.53	3.0859	3.748(6)	142.92
323	2.7595	3.584(9)	161.19	3.0882	3.745(2)	147.30
313	2.7774	3.604(5)	161.64	3.0866	3.753(6)	143.51
303	2.7998	3.6032(6)	159.15	3.0820	3.7562(5)	141.90
293	2.7381	3.596(6)	161.08	3.0710	3.751(2)	143.96
290	2.7845	3.5891(8)	159.40	3.0748	3.7504(9)	142.06
270	2.7882	3.5905(6)	158.91	3.0842	3.7495(6)	140.85
250	2.7835	3.5866(6)	158.09	3.0849	3.7466(6)	140.45
230	2.7852	3.5906(6)	157.57	3.0771	3.7385(6)	139.40
210	2.7862	3.5871(6)	157.62	3.0887	3.7441(7)	138.73
190	2.7815	3.5820(6)	155.53	3.0814	3.7366(6)	138.69
170	2.7764	3.5791(5)	154.98	3.0710	3.7248(4)	137.92
150	2.7804	3.5817(5)	155.70	3.0726	3.7236(5)	137.21
130	2.7795	3.5824(6)	156.03	3.0639	3.7151(6)	136.22
110	2.7849	3.5823(7)	154.91	3.0655	3.7171(6)	135.99
			1			1

(vi) = 1-y, x-y, 0.333+z; (vii) = 1-y, 1+x-y, -0.667+z

	H25A…Se8 ^{vii}	N25····Se8 ^{vii}	N25H25A····Se8 ^{vii}	H25B····Se6	N25Se6	N25H25B…Se6
373	3.0045	3.686(4)	141.53	2.8069	3.631(3)	167.32
363	3.0045	3.682(3)	140.98	2.8016	3.636(3)	167.37
353	3.0044	3.696(3)	140.20	2.8007	3.622(3)	166.19
343	3.0071	3.691(3)	140.61	2.8010	3.636(3)	167.65
333	3.0009	3.692(4)	140.24	2.8045	3.632(4)	167.46
323	3.0001	3.691(2)	144.08	2.8045	3.637(8)	171.55
313	3.0005	3.692(4)	140.26	2.8027	3.637(4)	167.58
303	3.0013	3.6890(5)	138.42	2.8071	3.6334(5)	161.64
293	3.0055	3.684(6)	141.03	2.8024	3.641(6)	169.47
290	2.9910	3.6804(9)	138.61	2.8163	3.6422(9)	161.54
270	2.9847	3.6679(6)	137.85	2.8182	3.6427(6)	161.14
250	2.9810	3.6611(6)	137.45	2.8180	3.6421(6)	161.05
230	2.9819	3.6572(6)	136.88	2.8107	3.6338(6)	160.78
210	2.9733	3.6488(7)	136.90	2.8073	3.6292(7)	160.47
190	2.9599	3.6362(6)	136.97	2.8036	3.6349(6)	160.31
170	2.9723	3.6426(5)	136.28	2.8094	3.6216(5)	160.53
150	2.9662	3.6351(5)	136.09	2.8014	3.6223(5)	160.21
130	2.9523	3.6203(7)	135.97	2.8037	3.6262(6)	160.62
110	2.9426	3.6123(4)	136.39	2.8043	3.6268(5)	160.48

 $\overline{(vii)} = 1-y, 1+x-y, -0.667+z$

	H16B····Se5	N16Se5	N16H16B…Se5	H16A ^{viii} Se2	N16····Se2 ^{viii}	N16H16A…Se2 ^{viii}
373	2.8015	3.601(2)	162.53	2.9712	3.740(4)	153.31
363	2.7912	3.608(2)	161.69	2.9798	3.730(5)	152.96
353	2.7895	3.599(3)	161.30	2.9797	3.731(4)	152.06
343	2.7738	3.597(3)	161.38	2.9781	3.740(6)	152.01
333	2.7689	3.595(4)	161.61	2.9749	3.742(2)	151.30
323	2.7847	3.596(5)	160.19	2.9769	3.742(6)	150.79
313	2.7753	3.585(3)	159.98	2.9749	3.744(2)	151.61
303	2.7620	3.5725(5)	160.07	2.9775	3.7416(5)	150.10
293	2.7789	3.571(5)	159.01	2.9736	3.742(2)	151.49
290	2.7469	3.5659(8)	159.68	2.9702	3.7436(8)	149.98
270	2.7510	3.5718(6)	160.14	2.9782	3.7391(5)	149.59
250	2.7460	3.5681(6)	160.48	2.9740	3.7327(6)	149.23
230	2.7508	3.5719(6)	160.21	2.9667	3.7262(6)	148.35
210	2.7407	3.5634(6)	160.62	2.9821	3.7321(6)	147.88
190	2.7395	3.5609(5)	160.29	2.9757	3.7274(5)	147.14
170	2.7385	3.5589(5)	160.03	2.9802	3.7254(4)	146.15
150	2.7372	3.5580(5)	160.13	2.9805	3.7220(4)	145.60
130	2.7263	3.5465(6)	159.96	2.9853	3.7249(6)	145.34
110	2.7206	3.5438(6)	160.79	2.9891	3.7237(6)	144.82

Table S2 Continued. The distances of NH···N in selenourea phases α and γ .

 $\overline{(viii)} = 2-y, 1+x-y, 0.333+z$

	H26A····Se2 ^{viii}	N26…Se2 ^{viii}	N26H26A····Se2 ^{viii}	H26B····Se4	N26Se4	N26H26A····Se4
373	2.7135	3.557(2)	156.12	2.6620	3.537(5)	167.58
363	2.7205	3.554(3)	157.27	2.6615	3.538(5)	168.28
353	2.7160	3.544(2)	156.75	2.6722	3.538(3)	168.03
343	2.7159	3.545(3)	157.32	2.6701	3.538(5)	168.86
333	2.7160	3.5352(4)	157.39	2.6591	3.539(5)	169.89
323	2.7120	3.531(6)	157.27	2.6601	3.538(7)	169.02
313	2.7147	3.531(3)	156.84	2.6586	3.535(4)	168.36
303	2.7117	3.5306(5)	159.61	2.6756	3.5303(5)	170.65
293	2.7202	3.537(5)	158.81	2.6765	3.533(6)	168.23
290	2.7162	3.533(8)	159.19	2.6746	3.5278(9)	171.72
270	2.7097	3.5259(6)	158.96	2.6831	3.5351(6)	171.00
250	2.7109	3.5245(6)	158.33	2.6759	3.5273(6)	170.66
230	2.7000	3.513396)	158.26	2.6769	3.5291(6)	171.13
210	2.7023	3.5103(6)	157.05	2.6724	3.5239(7)	170.72
190	2.6984	3.5055(5)	156.84	2.6695	3.5215(6)	171.01
170	2.6968	3.5015(4)	156.33	2.6701	3.5220(5)	171.00
150	2.6984	3.5000(4)	155.68	2.6674	3.5187(5)	170.66
130	2.6956	3.4965(6)	155.51	2.6699	3.5202(6)	170.12
110	2.6977	3.4945(6)	154.58	2.6675	3.5196(6)	170.98

 $\overline{(viii)} = 2-y, 1+x-y, 0.333+z$

	H17B ^{viii} ····Se7	N17…Se7 ^{viii}	N17H17B····Se7 ^{viii}	H17A····Se5 ^{ix}	N17…Se5 ^{ix}	N17H17A····Se5 ^{ix}
373	2.6509	3.511(5)	163.22	2.6311	3.504(5)	145.50
363	2.6517	3.514(5)	164.60	2.6382	3.504(4)	144.50
353	2.6473	3.512(5)	163.88	2.6306	3.505(5)	146.25
343	2.6461	3.513(5)	164.83	2.6381	3.487(8)	148.36
333	2.6501	3.514(5)	165.24	2.6210	3.499(4)	150.12
323	2.6482	3.511(5)	166.86	2.6324	3.502(8)	149.77
313	2.6464	3.5168(6)	165.96	2.6355	3.498(7)	149.90
303	2.6694	3.5190(5)	169.76	2.6342	3.4556(5)	157.76
293	2.6547	3.5190(5)	167.69	2.6217	3.459(5)	154.68
290	2.6547	3.5096(6)	170.21	2.6313	3.4455(8)	158.41
270	2.6536	3.5052(8)	169.38	2.6289	3.4459(6)	159.06
250	2.6523	3.5024(5)	169.78	2.6189	3.4363(6)	159.17
230	2.6552	3.5020(8)	168.73	2.6317	3.4470(6)	158.65
210	2.6489	3.5073(7)	169.18	2.6168	3.4340(6)	159.13
190	2.6484	3.5073(5)	168.66	2.6172	3.4373(5)	159.84
170	2.6476	3.4949(5)	168.63	2.6162	3.4382(4)	160.31
150	2.6428	3.4999(5)	168.54	2.6140	3.435894)	160.26
130	2.6478	3.4936(6)	168.01	2.6070	3.4275(6)	159.93
110	2.6375	3.4831(6)	168.03	2.6065	3.4260(6)	159.18

(viii) = 2-y, 1+x-y, 0.333+z; (ix) = 1+y-x, 1-x, -0.333+z

	H27A····Se5 ^{ix}	N27····Se5 ^{ix}	N27H27A····Se5 ^{ix}	H27B····Se7 ^{viii}	N27…Se7 ^{viii}	N27H27B····Se7 ^{viii}
373	3.6474	4.283(4)	124.06	2.6675	3.518(9)	162.59
363	3.6354	4.272(8)	124.82	2.6606	3.513(8)	163.31
353	3.6237	4.268(6)	124.12	2.6640	3.515(8)	164.96
343	3.6132	4.257(6)	125.51	2.6653	3.512(9)	165.68
333	3.5962	4.244(5)	126.48	2.6790	3.513(9)	166.58
323	3.5806	4.240(9)	127.75	2.6635	3.510(7)	167.36
313	3.5945	4.227(5)	126.08	2.6639	3.517(9)	168.71
303	3.5662	4.2137(6)	130.48	2.6661	3.5161(6)	169.96
293	3.5735	4.218(7)	128.13	2.6726	3.515(3)	166.75
290	3.5533	4.2017(9)	130.56	2.6748	3.5245(9)	169.82
270	3.5325	4.1903(6)	130.59	2.6704	3.5226(6)	171.12
250	3.5260	4.1826(6)	131.45	2.6707	3.5228(7)	171.10
230	3.5204	4.1739(7)	132.10	2.6685	3.5105(7)	171.01
210	3.5145	4.1699(7)	133.30	2.6624	3.5151(7)	171.41
190	3.5066	4.1624(6)	132.34	2.6705	3.5125(6)	171.02
170	3.5117	4.1655(5)	133.12	2.6566	3.5085(5)	170.95
150	3.5031	4.1584(5)	133.28	2.6538	3.5064(5)	171.34
130	3.4883	4.1443(6)	132.33	2.6552	3.5081(7)	171.51
110	3.4990	4.1499(6)	134.91	2.6480	3.5018(7)	171.38

(viii) = 2-y, 1+x-y, 0.333+z; (ix) = 1+y-x, 1-x, -0.333+z

	H18B····Se8 ^{vii}	N18····Se8 ^{vii}	N18H18B····Se8 ^{vii}	H18A…Se4	N18…Se4	N18H18ASe4
373	2.6651	3.504(6)	165.33	3.0360	3.760(6)	149.15
363	2.6594	3.491(6)	162.92	3.0304	3.758(6)	148.04
353	2.6602	3.504(6)	167.05	3.0323	3.746(7)	150.37
343	2.6622	3.508(7)	164.27	3.0391	3.765(5)	146.30
333	2.6534	3.501(7)	164.92	3.0358	3.766(7)	150.08
323	2.6667	3.502(9)	167.87	3.0336	3.757(5)	147.21
313	2.6695	3.508(2)	165.33	3.0320	3.744(8)	148.78
303	2.6662	3.5018(5)	164.29	3.0299	3.7481(5)	146.80
293	2.6779	3.503(5)	167.67	3.0337	3.745(6)	144.74
290	2.6807	3.5060(9)	164.22	3.0334	3.7335(8)	143.02
270	2.6680	3.5039(6)	164.34	3.0355	3.7463(6)	143.12
250	2.6638	3.5019(6)	165.10	3.0380	3.7385(6)	142.07
230	2.6590	3.5004(6)	166.27	3.0319	3.7338(6)	140.24
210	2.6605	3.4997(6)	165.51	3.0290	3.7281(6)	139.89
190	2.6439	3.4833(6)	165.55	3.0314	3.7312(6)	139.98
170	2.6358	3.4764(5)	166.00	3.0280	3.7281(5)	140.00
150	2.6373	3.4799(5)	166.70	3.0165	3.7175(5)	140.11
130	2.6310	3.4755(6)	167.44	3.0070	3.7113(6)	140.53
110	2.6295	3.4722(6)	166.85	3.0065	3.7079(6)	140.41

 $\overline{(vii)} = 1-y, 1+x-y, -0.667+z$

	H28A…Se4	N28Se4	N28H28A····Se4	H28B····Se8 ^{vii}	N28····Se8 ^{vii}	N28H28B····Se8 ^{vii}
373	2.9228	3.712(7)	151.60	2.6267	3.490(7)	171.59
363	2.9460	3.719(7)	150.48	2.6213	3.468(7)	168.48
353	2.8549	3.712(6)	151.31	2.6298	3.476(6)	168.33
343	2.9179	3.717(8)	149.89	2.6217	3.483(6)	170.49
333	2.8799	3.720(6)	152.49	2.6250	3.481(6)	167.86
323	2.8399	3.714(7)	152.32	2.6216	3.474(7)	170.65
313	2.8589	3.713(6)	154.34	2.6235	3.474(3)	170.20
303	3.0047	3.7118(6)	149.87	2.6286	3.4715(6)	166.80
293	2.8880	3.714(7)	147.81	2.6254	3.470(4)	169.89
290	3.0072	3.7111(9)	146.46	2.6299	3.479(1)	165.44
270	2.9843	3.6960(7)	145.46	2.6279	3.4790(7)	166.16
250	2.9749	3.6869(6)	145.48	2.6298	3.4720(7)	166.54
230	2.9708	3.6813(7)	144.27	2.6265	3.4673(7)	166.06
210	2.9534	3.6682(7)	143.82	2.6257	3.4691(7)	167.01
190	2.9407	3.6594(6)	142.34	2.6281	3.4721/(6)	167.29
170	2.9278	3.6474(5)	142.44	2.6232	3.4672(5)	167.23
150	2.9170	3.6385(5)	142.67	2.6152	3.4601(5)	167.59
130	2.9020	3.6258(7)	142.97	2.6142	3.4591(7)	167.62
110	2.8890	3.6164(6)	143.35	2.6220	3.4665(7)	167.36

(vii) = 1-y, 1+x-y, -0.667+z

	H19B····Se9 ^v	N19····Se9 ^v	N19H19A…Se9 ^v	H19A…Se1 ^{iv}	N19····Se1 ^{iv}	N19H19A…Se1 ^{iv}
373	2.6547	3.534(7)	165.74	2.8234	3.634(6)	155.66
363	2.6443	3.538(7)	163.68	2.8203	3.634(5)	154.16
353	2.6465	3.538(6)	163.20	2.8226	3.631(4)	153.14
343	2.6431	3.532(7)	165.30	2.8255	3.633(6)	154.95
333	2.6525	3.531(6)	164.28	2.8234	3.639(6)	154.54
323	2.6574	3.537(9)	159.40	2.8286	3.633(9)	150.50
313	2.6543	3.539(8)	163.98	2.8229	3.631(6)	153.20
303	2.6530	3.5232(5)	162.64	2.8275	3.6303(5)	156.06
293	2.6524	3.532(5)	162.37	2.8275	3.6230(8)	150.90
290	2.6510	3.5330(9)	160.78	2.8264	3.6221(8)	154.61
270	2.6462	3.5235(9)	161.82	2.8222	3.6199(6)	154.98
250	2.6442	3.5214(6)	161.81	2.8182	3.6162(6)	155.06
230	2.6434	3.5015(6)	162.01	2.8132	3.6088(6)	154.55
210	2.6414	3.4983(6)	161.71	2.8173	3.6016(6)	154.31
190	2.6474	3.4967(6)	162.37	2.8108	3.6067(6)	154.63
170	2.6502	3.4940(5)	163.71	2.7964	3.5970(5)	155.56
150	2.6486	3.4840(5)	164.20	2.7910	3.5921(5)	155.66
130	2.6453	3.4814(6)	164.43	2.7798	3.5818(6)	155.85
110	2.6415	3.4775(6)	164.37	2.7788	3.5789(6)	155.45

(iv) = y-x, 1-x, -0.333+z; (v) = 1-y, 1+x-y, 0.333+z

	H29ASe1 ^{iv}	N29····Se9 ^{iv}	N29H20A····Se9 ^{iv}	H29B···Se9 ^v	N29····Se9 ^v	N29H29B…Se9 ^v
373	2.7722	3.595(8)	160.79	2.6568	3.523(9)	165.80
363	2.7833	3.601(8)	159.44	2.6520	3.528(9)	164.44
353	2.7716	3.590(8)	159.58	2.6538	3.521(7)	164.76
343	2.7902	3.602(8)	157.98	2.6530	3.515(8)	163.10
333	2.7685	3.584(8)	158.87	2.6511	3.516(8)	164.07
323	2.7774	3.591(2)	154.15	2.6529	3.514(3)	159.90
313	2.7827	3.590(9)	156.89	2.6550	3.514(8)	162.29
303	2.7888	3.6035(6)	158.68	2.6580	3.5016(5)	167.13
293	2.8079	3.599(2)	153.65	2.6598	3.501(2)	160.09
290	2.7965	3.5903(9)	156.24	2.6552	3.4964(9)	166.19
270	2.7720	3.5828(6)	157.75	2.6517	3.4953(6)	167.10
250	2.7725	3.5818(6)	157.40	2.6461	3.4891(6)	166.87
230	2.7690	3.5787(7)	157.50	2.6429	3.4861(6)	166.94
210	2.7659	3.5743(7)	157.20	2.6445	3.4870(6)	166.69
190	2.7690	3.5756(6)	156.82	2.6302	3.4727(6)	166.69
170	2.7692	3.5745(5)	156.52	2.6209	3.4623(5)	166.27
150	2.7601	3.5673(5)	156.93	2.6251	3.4673(5)	166.54
130	2.7658	3.5707(7)	156.44	2.6103	3.4529(7)	166.67
110	2.7706	3.5732(7)	155.97	2.6057	3.4475(6)	166.40

Table S2 Continued. The distances of NH…Se and NH…N in selenourea phases α and γ .

(iv) = y-x, 1-x, -0.333+z; (v) = 1-y, 1+x-y, 0.333+z

	N16····H27A ⁱ	N16…N27 ⁱ	N23…H18A	N23…N18	N19…H14A	N19…N14
373	2.6200	3.380(3)	2.9300	3.570(4)	2.8200	3.400(3)
363	2.6500	3.400(4)	2.9300	3.570(5)	2.7600	3.360(4)
353	2.6600	3.410(3)	3.0300	3.590(6)	2.7800	3.350(3)
343	2.6400	3.410(5)	2.9000	3.560(3)	2.8400	3.400(5)
333	2.6100	3.390(3)	2.9700	3.580(4)	2.8900	3.400(4)
323	2.6000	3.390(6)	2.9000	3.560(3)	2.8400	3.320(6)
313	2.6200	3.400(4)	2.9500	3.570(5)	2.8200	3.380(3)
303	2.5830	3.3650(9)	2.8610	3.479(2)	2.9600	3.4840(8)
293	2.6200	3.400(6)	2.8000	3.490(6)	2.9300	3.430(4)
290	2.5750	3.362(2)	2.7670	3.480(2)	2.9590	3.488(1)
270	2.5700	3.351(1)	2.7780	3.496(2)	2.9800	3.4980(9)
250	2.5600	3.343(1)	2.7740	3.493(6)	2.9760	3.5030(9)
230	2.5570	3.340(2)	2.7740	3.492(2)	2.9460	3.4800(9)
210	2.5470	3.332(1)	2.7670	3.487(3)	2.9680	3.491(1)
190	2.5590	3.3460(9)	2.7740	3.498(6)	2.9580	3.4820(9)
170	2.5520	3.3430(8)	2.7740	3.493(2)	2.9560	3.4720(7)
150	2.5490	3.338(2)	2.7700	3.489(2)	2.9430	3.4620(7)
130	2.5380	3.327(1)	2.7730	3.491(6)	2.9420	3.454(1)
110	2.5490	3.338(1)	2.7730	3.492(5)	2.9470	3.452(2)

Table S2 Continued. The distances of NH···Se and NH···N in selenourea phases α and γ .

(i) = 1-x+y, 1-x, -0.333+z

Table S2 Continued. The distances of NH···N in selenourea phases α and γ .

	H11B····Se1 ⁿ	N11···Se1 ⁿ	N11H11B····Se1 ¹	H11A…Se2 ¹	N11····Se2 ¹	N11H11A····Se2 ¹
393	2.7907	3.6324(6)	166.49	3.1212	3.7945(6)	135.70
383	2.7811	3.6221(6)	166.20	3.1209	3.7952(6)	135.82

(i) = 1-y, 1+x-y, 0.333+z; (ii) = -y, x-y, 0.333+z

Table S2 Continued. The distances of NH···N in selenourea phases α and γ .

	H22B····Se2 ⁱ	N22····Se2 ⁱ	N22H22B····Se2 ⁱ	H22A…Se1 ⁱⁱ	N22····Se1 ⁱⁱ	N22H22A····Se1 ⁱⁱ
393	2.7765	3.5795(6)	156.04	2.9142	3.6987(6)	152.55
383	2.7620	3.5679(6)	156.64	2.9253	3.7026(6)	151.27

(i) = 1-y, 1+x-y, 0.333+z; (ii) = -y, x-y, 0.333+z

	H21B····Se2 ¹	N21····Se2 ¹	N21H21B····Se2 ¹	H21A…Se1 ⁿ	N21···Se1 ⁿ	N21H21A····Se1 ⁿ
393	2.6764	3.5135(6)	164.79	2.9969	3.7678(4)	150.25
383	2.6789	3.5127(6)	163.70	3.0143	3.7732(3)	148.31
(i) $= 1-y, 1+x-y, 0.333+z$						

Table S2 Continued. The distances of NH…Se and NH…N in selenourea phase	s α and γ .
---	---------------------------

Table S2 Continued. The distances of NH···Se and NH···N in selenourea phases α and γ .

	H21A…N11	N21…N11	H11B····N22 ⁱ	N11…N22 ⁱ	H22A····N22 ⁱⁱ	N22…N22 ⁱⁱ
393	2.9800	3.501(2)	3.1790	3.620(3)	3.0030	3.521(3)
383	2.9710	3.500(1)	3.1730	3.619(5)	3.0000	3.517(5)

(i) = -y, x-y, 0.333+z; (ii) = -x, -x+y, 0.333-z

S2. Figures

Figure S1 Differential scanning calorimetry (DSC) signal for selenourea at ambient pressure: (a) the heating and cooling runs below 425 K; (b) the sample heated up to the onset of melting and cooled down through the γ - α transition – a small exothermal signal about 340 K is associated with a product of the partial decomposition of SeC(NH₂)₂ at the m.p.; (c) the heating run through the α - γ transition, the sample melting at 473 K and fully decomposing just above the melting point as marked by the exothermic depression and absence of the freezing and γ - α endothermal signals on cooling.

Figure S2 Crystal structure of selenourea phase (a) α and (b) γ projected down [z]. Note their orientation difference of 30° about [z] (*cf.* Figure 4 in the main article). Labels of helices (capital letters A-B in phase α and γ) and molecules (numbers 1-9 in phase α and γ) in phase α are indicated.

Figure S3 Correlation between the distances of intermolecular contacts of H-atoms in the *anti* and *syn* positions. Capital letters A-I for phase α and A-B for phase γ label the independent molecules. The contacts of H atoms at nitrogen atom N1 are indicates as circles and those at N2 as triangles.

Figure S4 The distribution of Se…H distances in selenourea phases α and γ as a function of C=Se…H angles, plotted for the structures of phase α at 110 and 373 K, phase γ at 383 K (red symbols), as well as the high-pressure phase β at 0.21 GPa/296 K (blue symbols).

Figure S5 Averaged lengths of hydrogen bonds $N-H_{syn}\cdots$ Se and $N-H_{anti}\cdots$ Se in selenourea as a function of temperature.

Figure S6 Angles C7N27····N16 and N27····N16C6 across hydrogen bond N27H27A····N16 in selenourea phase α (white background), and for the corresponding short contact in phase γ (yellow background).

Figure S7 Averaged lengths of covalent bonds C-N (triangles) and C-Se (circles) in selenourea phases α and γ as a function of temperature. This plot illustrates the effect of thermally-induced molecular vibrations for the 'riding model' (Cruickshank, 1961), significantly shortening the averaged bond lengths in phase γ .