STRUCTURAL SCIENCE CRYSTAL ENGINEERING MATERIALS

Volume 78 (2022)
Supporting information for article:

Pervasive approximate periodic symmetry in organic P1 structures
Carolyn Pratt Brock

Conventions

Residues (i.e., crystallographically independent molecules and/or ions) are colored as in the CCDC program Mercury (lime green, bright blue, red, yellow, magenta, cyan, white, dark green, navy, brown for \#1, \#2, \#3, ..., \#10) except that the shades have been darkened to make the light colors more visible.
In most cases the display style is capped sticks. Stereocenters are sometimes shown as spheres. If more than one layer is shown in a single image the first layer is shown as capped sticks, the second as wireframe, and the third as balls and sticks.

Anything shown in medium blue describes the approximate symmetry.
Axes are not usually labeled but they can be identified by color (red, green, blue for $\mathbf{a}, \mathbf{b}, \mathbf{c}$).
Planes are labeled ($h k l$); directions are labeled [$x y z$]. Planes are labeled with their simplest Miller indices; no distinction is made between, e.g., (110) and (220); only the orientation of the plane is specified. Similarly, directions are labeled with the simplest set of integers.

The primary rotation axis is vertical unless the approximate layer symmetry is $p 112$ or unless a different direction is specified. If the only approximate symmetry is a glide the mirror normal is vertical unless the approximate layer symmetry is p11a or unless a different direction is specified.

A layer is always shown in projection along its normal unless a rotation is specified.
The symbols shown for twofold rotations usually, but may not always, indicate the sense of the rotation (ie, whether it is clockwise or counterclockwise).

In most cases disorder, if there is any, is not shown. In almost no structure does reported disorder affect the identification of approximate symmetry. if it does the effect is explained.

Structures that have approximate inversion symmetry (by both distortion and mimicry)

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Best overlay of the
two molecules as
If the OMe and CF_{3} substituents at the one stereocenter were switched in half of the molecules they would be enantiomers

Views along a, b, and c

If the H and $i-\mathrm{Pr}$ substituents at the one stereocenter were switched in half of the molecules the two would be enantiomers

$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

If the H and Me substituents at the two stereocenters were both switched in half of the molecules the two would be enantiomers

4-cyano-4'-X-benzalazine
Views along a

$4-\mathrm{Cl}$
disorder 67:33
at $174 \mathrm{~K}(R=0.045)$

4-Br
disorder 81:19
at $174 \mathrm{~K}(R=0.025)$

4-I
disorder 70:30 at $173 \mathrm{~K}(R=0.023)$

If the disorder were 50:50 the space group would be $P \overline{1}$, but since the molecules seem very unlikely to reorient in the crystal the disorder must have been established during crystal growth

View along [11 $\overline{1}]$

A layer (123)

If the space group were $P \overline{1}$ the included THF molecule would be disordered around an inversion center. Structure was determined at 110 K where the THF was found to be ordered
$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

EYOLAG

 ($P 1, Z=1$)

The two stereocenters in the $\mathrm{C}_{4} \mathrm{~N}_{2}$ ring are heterochiral. The two CHMeEt substituents are homochiral. The molecule mimics inversion symmetry

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

The molecule has approximate inversion symmetry except for the difference between the $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{~F}_{5}$ substituents. The two ring types lie face-to-face as expected so that there is an approximate inversion center between them

The nitro group breaks the inversion symmetry of the rest of the molecule but that substituent is quite near the molecular centroid and is shielded from intermolecular interactions. Overall the structure has good approximate symmetry $P \overline{1}$

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

The deviations from $P \overline{1}$ symmetry are small but obvious.
Structure was determined at 115 K ; it might be more symmetric at RT
$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

The conformations of the $\mathrm{C}_{4} \mathrm{~N}$ rings differ in the two homochiral molecules; they also differ by inversion at the N atom

Best overlay of the two molecules as found and with one inverted

$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

The one stereocenter is near the center of the quite flexible molecule
(the disorder in the n-Bu substituents is not shown)

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Mimic of a $P \overline{1}$ structure with $Z=2, Z^{\prime}=1=2(1 / 2)$.
If the H and Et substituents at one of the two stereocenters in each molecule were switched then each molecule would have good inversion symmetry.
The two molecules have different conformations.

Best overlay of the two molecules as found showing that they have different conformations but that each has approximate inversion symmetry

$\overline{1}$ mimic plus (includes approximate translation)

LEYXET
($P 1, Z=4$)

Views along [110] and [1 $\overline{1} 0$]

Best overlays of \#1 and \#2 as observed, with inversion, and with flexibility

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Views of the molecule

$\frac{\lambda}{N} 90^{\circ}$

Inversion symmetry would require that the ring - O - atoms be the same as the two ring - NHgroups. The position and orientation of the $\mathrm{CH}_{2} \mathrm{Ph}$ substituents contributes to the approximate symmetry.
$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

1:2 pyridine solvate

18 stereocenters; possible twofold symmetry; disorder not shown

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

8 stereocenters; possible twofold symmetry

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

If the H and $\mathrm{CH}=\mathrm{CH}_{2}$ substituents at the one stereocenter were switched in half of the molecules they would be enantiomers

Best overlays of the two molecules as found and with one inverted

P1 \quad mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

If the CH_{3} and CF_{3} substituents at the one stereocenter were switched in half of the molecules they would be enantiomers

OKATID
($P 1, Z=2$)

Best overlay of the two molecules as found and with one inverted

$P \overline{1}$ mimic

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Best overlay of the two molecules as found

Except for the ring O atom the molecule has near mirror symmetry

PLATON issues no warning at all, even with increased tolerances
but the structure is \#4 on the Rekis (2020) list of centrosymmetric mimics

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

If the space group were $P \overline{1}$ with $Z^{\prime}=1 / 2$ the cyclopent-2-en-1-one solvent molecule would have to lie on an inversion center and so could not participate fully in the $\mathrm{OH} . . \mathrm{OH} . . \mathrm{O}=\mathrm{H}$-bond motif. The structure was determined at 123 K so possibly there is disorder at a higher temperature

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

1:1 4-carboxybenzeneboronic acid 4,4'-bipyridine. The para $\mathrm{C}(=\mathrm{O}) \mathrm{OH}$ and $\mathrm{B}(\mathrm{OH})_{2}$ substituents on the central benzene ring of the former form H bonds in very similar ways so that the B containing molecule can mimic inversion symmetry

Distorted $P \overline{1}$ (a kryptoracemate)

RIGSEF

(P1, Z=2)
Views along [1 $1 \overline{1} 0]$, [101]. [111]. and [1 $\overline{1} 1]$ as refined in $P 1$ at RT (upper row) and as averaged in $P \overline{1}$ (lower row)

The $P \overline{1}$ averaging (Marsh, 1999) did not include a refinement. Most of the most perturbations from $P \overline{1}$ symmetry involve the F atoms but there are a number of other small differences as well. PLATON recommends $P \overline{1}$ but only at the 91% level

Distorted $P \overline{1}$ (kryptoracemate)

Same views but cropped to show anions

RIGSEF, con't
($P 1, Z=2$)

The F atoms in the $P 1$ structure $(R=0.041)$ may be somewhat disordered but there is no evidence they are as disordered as they would need to be in a $P \overline{1}$ structure
$P \overline{1}$ mimic

Two adjacent,
homochiral -CHMestereocenters in a ring can mimic an inversion relationship very well

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

SUYLEF

($P 1, Z=2$)

Best overlay of the two molecules as found and with one inverted

$P \overline{1}$ mimic
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

TUHWAW ($P 1, Z=1$)

1:2 solvate (4-methylcyclohexanone)

Views along a, b, and [011]

The cation of EDTA hydrobromide monohydrate has excellent inversion symmetry but the inversion centers of a $P \overline{1}$ description would relate the Br^{-}ion and water molecule. Their positions are well related by the approximate symmetry but chemically they are very different. (No displacement ellipsoids are available but a significant $\mathrm{Br} / \mathrm{H}_{2} \mathrm{O}$ disorder would have raised the R factor above 0.050.)

The ammonium salt hydrate of 5-carboxypyridine-2-carboxylate. Centroids between two cations related by translation and for the cation and water molecule are shown.

The displacement ellipsoids suggest some disorder of the water molecule and perhaps the $\mathrm{NH}_{4}{ }^{+}$ion is possible but there does not seem to be any disorder in the $\mathrm{C}_{5} \mathrm{~N}$ ring

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Best overlay of the
A $P \overline{1}$ mimic requires inversion relationship of 4-chlorophenyl and 3-methyl-1H-indol-2-yl)ethyl substituents, but they are both planar and are similar in size. The approximate inversion mimicry is convincing.
Two long (3.09, $3.31 \AA$) NH...O= bonds connect the two molecules shown. The two molecules have very different conformations two molecules as found

Structures that have approximate glide symmetry by distortion and by mimicry

Projection along [111]

The glides along a and [111] would switch the single and double bonds in the 8-azoniabicyclo[3.2.1] substituent but the lengths are clearly not the same

$$
\begin{gathered}
l a, Z=4, Z^{\prime}=1 \\
\text { axes [111], [01 }],[\overline{1} 00] ; \\
\text { angles } 90.0,104.7,90.2^{\circ}
\end{gathered}
$$

glide mimic (Rn with a unique), 3-D

View along \mathbf{a}^{*}

$\longleftarrow[100]$

View along b*
Cell angles are
91.5, 91.7, 91.4°

distorted glide (pb11), 2-D (achiral)
KUSVEZO3

distorted glide (p11a), 2-D (kryptoracemate)

XEFNAX
($P 1, Z=2$)

Views along a

glide mimic, 1-D

View along a
(H bonds shown in this view only)

H-bonded columns [001] have very good approximate glide symmetry but the offset along a is not correct for either pb11 or cm11 approximate symmetry

Layer (010)

- $f_{o r}$

Structures that have an approximate mirror

FETDIS
($P 1, Z=1$)
distorted $p 11 m, z^{\prime}=1 / 2,2-\mathrm{D}$ (achiral)

View along [2 $\overline{1} 0$]

1:1:2 hydrated salt;
an H bond between the water molecules links the H -bonded layers

$$
\begin{gathered}
p 11 m, z=1, z^{\prime}=1 / 2 \\
\text { or even } p 112 / m, z=1, z^{\prime}=1 / 4
\end{gathered}
$$

Layer (122)

distorted $p 11 m, z^{\prime}=1 / 2,2-\mathrm{D}$ (achiral)

View along [001]

Layer (100)

distorted $p 11 m, z^{\prime}=1 / 2,2-\mathrm{D}$ (achiral)

View along [1 $\overline{1} 0]$

Layer (11 $\overline{1}$)

distorted $p 11 m, z^{\prime}=1 / 2,2-\mathrm{D}$ (achiral)
YALWIS
($P 1, Z=1$)

View along [010]

Layer (20 $\overline{1}$)

Structures that have approximate symmetry C2 or c211
$2 \& 2_{1}, 3-D$
CIQFOY
(P1, Z=2)

View along [111]; \mathbf{a} is vertical

C211, $Z=4, Z^{\prime}=1$
axes [120], [100], [$\overline{111}$],
angles 91.6, 96.3, and 89.9°
$2 \& 2_{1}$ mimic, $3-D$

View along [0 $\overline{1} 1]$

View along [$\overline{1} 00]$

SITFEH
($P 1, Z=1$)

View along [1̄20]

$C 2, Z=2, Z^{\prime}=1 / 2$
axes [120], [100], [0 $\overline{1} 1]$ angles 89.3, 117.2, 89.3°

(while there are obvious layers the approximate symmetry is actually 3-D; see next page)

XEVCEJ
($P 1, Z=4$)

View of a layer (011)

The two independent EtOHs and the disordered $\mathrm{H}_{2} \mathrm{Os}$ (6? 7?) are not shown; all H bonds involve solvent and lie within the layer

The approximate translations are [111]/2 plus any lattice vector leg, [111$] / 2,[1 \overline{1} 1] / 2$, etc)

View along [1̄1]

The two independent
EtOHs and the
disordered $\mathrm{H}_{2} \mathrm{Os}$ (6? 7?)
are not shown; all H bonds involve solvent and lie within layers (011)

View along [$\overline{1} 11]$
($P 1, Z=4$)
XEVCEJ,

View along [111] \quad| con't |
| :--- |
| $(P 1, Z=4)$ |,$~$

$\frac{\sqrt{2}}{} 90.4^{\circ}$

$C 2, Z=4, Z^{\prime}=1$
axes $\left[3 / 2^{1 / 2} \frac{1}{1 / 2}\right],\left[\frac{1}{1 / 2} 1 / 2^{1 / 2}\right],\left[\frac{1}{1 / 2} 1 / 2^{1 / 2}\right]$

The approximate translations
are [111]/2 plus any lattice vector (eg,
[111$] / 2,[1 \overline{1} 1] / 2$, etc)
$2 \& 2_{1}, 2-D$
View along [1 $\overline{1} 0$]

Layer (001), $1 / 2<z<11 / 2$

BILJIR01
($P 1, Z=2$)

(see also next page)

The layers (001) are offset by approximately [110]/4

BILJIR01,
con't
($P 1, Z=2$)
1.5 layers (001), $1 / 2<z<2$

Layer (001)
c211, $z=8, z^{\prime}=2$
axes [100], [120]

Other pairs of molecules (eg, \#1\&2, \#1\&3) are related by twofold axes that are more approximate, but the directions of those axes are not simple

$2 \& 2_{1}, 2-\mathrm{D}$ mimic

View along a

$$
\begin{gathered}
\text { Layer (001) } \\
c 211, Z=2, Z^{\prime}=1 / 2 \\
\text { axes }[100],[120]
\end{gathered}
$$

CUWBIG

($P 1, Z=1$)

The molecule has approximate twofold symmetry if the difference between the linked C_{6} and $\mathrm{C}_{3} \mathrm{~N}_{2}$ rings is ignored

View along c* of layer (001)

$$
0 \leq z \leq 1
$$

The achiral molecule very nearly has symmetry 2 mm .
Packing is nearly the same as in MMANCN, where the molecule has only approximate mirror symmetry.
$2 \& 2_{1}, 2-\mathrm{D}$ showing deviations from approximate 3-D symmetry

FUZTIE ($P 1, Z=2$)

View of a layer (001)

Layer (001)
c211, $z=4, z^{\prime}=1$
axes [110], [110]

View of 1.5 layers (001)

View along [110]

$$
\begin{gathered}
\text { Layer (001) } \\
c 211, z=4, z^{\prime}=1 \\
\text { axes }[110],[1 \overline{1} 0]
\end{gathered}
$$

Views along a and \mathbf{b}

Layers (001)

The molecules are closer together for $0 \leq z \leq 1$ but the symmetry is much more approximate

View of a layer (001)

Layer (001)
c211, $z=2, z^{\prime}=1 / 2$
axes [100], [120]
The $\mathrm{H}_{2} \mathrm{O}$ molecules of the tetrahydrate form layers that have no symmetry other than translation

View along [110]

> Layer (001)
> c211, $z=4, z^{\prime}=1$
> $\operatorname{axes}[110],[1 \overline{1} 0]$

View along c* of layer (001)

$$
0 \leq z \leq 1
$$

The achiral molecule very nearly has symmetry m. Packing is nearly the same as in DMTCUN10, in which the molecule nearly has symmetry 2 mm

$2 \& 2_{1}, 2-\mathrm{D}$ (not 3-D even though there is a cell with twofold axes and $\alpha, \gamma=91.0,90.5^{\circ}$)

Layer (01 $\overline{1}$)

(H-bonds shown in this view only)

$$
\begin{gathered}
\text { Layer }(01 \overline{1}), c 211, z^{\prime}=1 \\
\text { axes [100], [122]; } \\
\text { angle } 90.5^{\circ}
\end{gathered}
$$

Three layers (01 $\overline{1}$)

$$
\geq
$$

$\frac{\lambda}{N} 90^{\circ}$

(see also next page)
$2 \& 2_{1}, 2-D$ (not 3-D even though there is a cell with twofold axes and $\alpha, \gamma=91.0,90.5^{\circ}$)

Three layers ($01 \overline{1}$)
The $1^{\text {st }}$ and $3^{\text {rd }}$ layers are offset
 $\frac{\lambda}{N} 90^{\circ}$

Three layers ($01 \overline{1}$)

PANFOA, con't
($P 1, Z=2$)
rotated around [100] by 3°
$\frac{\lambda}{20^{\circ}}$

In the rotated cell adjacent layers are offset by $1 / 4$ along each of the two layer axes so that 3-D C2 symmetry is impossible

View of a layer ($1 \overline{2} 1$)

Layer (1 $\overline{2} 1$)
$c 211, z=2, z^{\prime}=1 / 2$
axes [10 $\overline{1}]$, [321]

POPGUN
($P 1, Z=2$)
(a dihydrate)

The main difference between the structures is the positions of the water molecules, one of which is disordered 76:24 in the C2 structure

View along
[011 $]$

View along [010]

View of a layer (1 $\overline{11}$)

Layer (1 $\overline{11}$)
c211, $z=2, z^{\prime}=1 / 2$
axes [101], [12 $\overline{1}]$

View of a layer (001)

Layer (001)
c211, $z=4, z^{\prime}=1$
axes [110], [1̄10]
(angles of those two axes with c are $106.6,77.6^{\circ}$)

View along [110]

$$
1 / 2 \leq z \leq 11 / 2
$$

Layer (001)
c211, $z=4, z^{\prime}=1$
axes [110], [1110]

View of layer (001)

2\&2 1_{1} 2-D (not 3-D even though there is a cell with twofold axes and

ZIYNAW
(P1, Z=2)

Layer (111)

Three layers (111)

$$
\geqslant
$$

$\frac{\lambda}{\lambda} 90^{\circ}$

(see also next page)
$2 \& 2_{1}, 2-\mathrm{D}$ (not 3-D even though there is a cell with twofold axes and $\alpha, \gamma=87.8,91.4^{\circ}$)

Three layers (111)
The $1^{\text {st }}$ and $3^{\text {rd }}$ layers are offset

$\frac{\lambda}{N} 90^{\circ}$

Three layers (111) rotated around [01 $\overline{1}$] by 29°

The $1^{\text {st }}$ and $3^{\text {rd }}$ layers are superimposed

In the rotated cell adjacent layers are offset by $1 / 4$ along each of the two layer axes so that 3-D C2 symmetry is impossible

Additional examples of $c 211$ (the approximate twofold axes are all vertical)

CANBEB

Layer (001)
axes [100], [120]

ITAVOQ

Layer (010)
axes [100], [102]

JUVREZ
Layer (001)
axes [110], [1̄10]

Yet more examples of $c 211$ layers (the approximate twofold axes are vertical)

QANJIZ

Layer (001)
axes [110], [110]

TUXLIJ

Layer (001)
axes [100], [120]

Structures that have approximate symmetry 2_{1} and one (KITGEB) with approximate symmetry 3_{1}

View along [110]

View along [1 $\overline{1} 0]$

Modulated $P 2_{1}, Z^{\prime}=1$ structure in which the [110] direction is unique and the approximate translations[110]/2 and [1 $\overline{1} 0] / 2(=[110] / 2-[010])$ perturb the 2_{1} symmetry; the angles of the approximate $P 2_{1}$ cell are $90.2,101.2,89.9^{\circ}$

View along a

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Modulated $P 2_{1}, Z^{\prime}=1$ structure angles of the $P 1$ cell are 69.7, 69.7, 78.5° the angles of the basic $P 2_{1}$ cell ($[1 \overline{1} 0]$ unique) are 90.0, 116.6, 90.0°

Views along [110] and [110]

$2_{1}, 3-\mathrm{D}$ (but a mimic because it is a hemihydrate)

Views along \mathbf{a} and \mathbf{b}

$P 2_{1}, Z^{\prime}=1$ mimic with c unique (there is only one $\mathrm{H}_{2} \mathrm{O}$ molecule for each pair of larger molecules); the cell angles are 91.5, 90.4, 100.7 ${ }^{\circ}$

Views along cand c*

Examples of distorted $P 2_{1}$ structures; projections are along $\mathbf{a}_{i}{ }^{*}$, where \mathbf{a}_{i} is the unique axis (conventionally \mathbf{a}_{2}), and are three unit cells deep

EGOZIK
unique axis a

KADMIL
unique axis c

DUNHAW
($P 1, Z=2$)

Layer (011)
$p 2_{1} 11, z=2, z^{\prime}=1$ axes [001], [010]

View of layer（001），
$1 / 2 \leq z \leq 11 / 2$

$\uparrow 90^{\circ}$

Layer（001） $p 2_{1} 11, z=2, z^{\prime}=1$ axes［010］，［100］

View of layer（001）， $0 \leq z \leq 1$

ありま

View of layers (001)

$$
\begin{gathered}
0 \leq z \leq 1 \\
\text { (even spacing } \\
\text { along b) }
\end{gathered}
$$

न 90°

$$
\begin{aligned}
& \quad 1 / 2 \leq z \leq 11 / 2 \\
& \text { (very uneven } \\
& \text { spacing along b) }
\end{aligned}
$$

2 , 2-D
View along [1 $\overline{11}]$

UCIYAI
(P1, Z=2)

Layer (01 $\overline{1}$)

$$
\begin{gathered}
\text { Layer }(01 \overline{1}) \\
p 2_{1} 11, z=2, z^{\prime}=1 \\
\text { axes }[1 \overline{11}],[100]
\end{gathered}
$$

View along b
Layer (102)

Additional examples of $p 2_{1} 11$ (the approximate 2_{1} axes are all vertical)

CEFKAA
Layer (010),
axes [001], [100]

ESOPIM
Layer (001),
axes [010], [100]

INAGAH
Layer (011),
axes [100], [01 $\overline{1}$]

Yet more examples of $p 2_{1} 11$ (the approximate 2_{1} axes are all vertical)

OFEFOW
Layer (100),
axes [010], [001]

REJSUU
Layer (001),
axes [010], [100]

WULSUS
Layer (100), axes [010], [001]

Structure that has an approximate translation

View along [1 $\overline{1} 1]$

Approximate translation
[1̄̄1]/3
(more
approximate
than most)

Structures that have more than one type of approximate symmetry

Im mimic, 3-D

$$
\operatorname{Im}, Z=2, Z^{\prime}=1 / 2
$$

$$
\text { axes }[00 \overline{1}], \text { [1 } \overline{10} 0],[\overline{111}] ;
$$

$$
\text { angles } 88.4,107.3,90.3^{\circ}
$$

The inversion and glide relationships are approximately correct for all atoms except the Me group. Cell angles are 89.2, 78.0, and 89.0°
$P 2_{1}$ /a mimic, 3-D
Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}
BIZPAE, con't
($P 1, Z=4$)

While the inversion and glide relationships are approximately correct for all atoms except the Me group the deviations are obvious

$P \overline{1}$ mimic with an approximate translation ($\mathbf{c}^{\prime}=\mathbf{c} / 2$), 3-D

BUPCAS
($P 1, Z=4$)

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Approximate c/2 translation

Overlay of molecules in approximate dimer
distorted $P 2_{1}$ with an approximate translation ($\mathbf{b}^{\prime}=[1 \overline{1} 0] / 2$), 3-D
IYAVEK ($P 1, Z=4$)

View along [110]
γ_{0}

$P 2_{1}$ cell with axes
$[110] / 2,[1 \overline{1} 0] / 2,[00 \overline{1}]$
has angles
$90.0,95.3$, and 90.1°
distorted P622, 3-D

Layer (001)

QACCII ($P 1, Z=2$)
(a cyclodextrin complex)

$$
\begin{gathered}
a=13.70, b=13.97 \AA, \\
\gamma=118.7^{\circ}, \\
\alpha=93.2, \beta=91.9
\end{gathered}
$$

α, β are close enough to 90° that the approximate symmetry should be considered to be 3-D

View along c*

View along b = -a

$$
\begin{gathered}
\text { View along } a=[01 \overline{1}] ; \\
b \text { is vertical }
\end{gathered}
$$

View along [111]

Layers (100) $p 112 / m, z=2, z^{\prime}=1 / 2$ (approximate 3-D symmetry $P \overline{1}$ with translation [111]/2)

View along b

Molecule can
have threefold
AZALIY
symmetry

Layer (100)

Layer (100)

$$
p 321, z=2, z^{\prime}=1 / 3
$$

axes [010], [001]

$$
(a=15.8, b=15.9 \AA
$$

$$
\left.\gamma=61.7^{\circ}\right)
$$

$\stackrel{\curvearrowleft}{\jmath} 90^{\circ}$

The distortions from p321 symmetry are significant but the approximate
symmetry is still easy to recognize

Layer (011)

> Layer (011)
> $p 2_{1} 2_{1} 2, z=4, z^{\prime}=1$ axes $[100],[01 \overline{1}]$, angle 90.7°

Layer (010)

$$
\begin{gathered}
\text { Layer (010) } \\
p 222, z=4, z^{\prime}=1, \\
\text { axes }[001],[100], \\
\text { angle } 90.5^{\circ}
\end{gathered}
$$

distorted cm11, 2-D (achiral)
DOXHIJ
($P 1, Z=1$)
Layer (1 $\overline{1} 0$)

> Layer $(1 \overline{1} 0)$
> $c m, z=2, z^{\prime}=1 / 2$
> axes $[111],[11 \overline{1}]$, angle 94.0°
distorted $p b 2_{1} a, 2-D$ (a kryptoracemate)
KOVBIG
(illustrates problem of the choice of boundaries)

Layer (001), $1 / 2 \leq z \leq 11 / 2$
H bonds lie within layer

[green and yellow molecules (\#1, \#4) are homochiral as are blue and red molecules (\#2, \#3)]

Two layers, each pb11, axes [100], [010], angle 90.0°

Layer (001), $0 \leq z \leq 1$
H bonds link layers (001)

The choice with the H bonds linking layers gives higher approximate symmetry than the choice with H bonds lying within the layers

One layer $p b 2{ }_{1} a$,
axes [100], [010], angle 90.0°
pb2 ${ }_{1}$ a mimic, 2-D

LONJEG
($P 1, Z=4$)

Layer (001)

distorted $c m 11, z^{\prime}=1 / 2,2-\mathrm{D}$ (achiral)

View along [001]
Layer (100)

Layer (010)

Layer (010) has very good approximate symmetry

$$
p 2_{1} 11, z=2, z^{\prime}=1
$$

(2 1 along a; angle 88.9°)
If the unmatched Me group is ignored the approximate symmetry is $p 2_{1}$ am (standard setting $p b 2_{1} m$), $z^{\prime}=1 / 2$, with the molecule lying on the mirror plane
distorted pba2, 2-D
QUBPIN
($P 1, Z=2$)
View along a

Layer (012)

(see also next page)

The "polymorphs" lc, la, and lb are very similar;
in polymorph II (QUBPIN02) the layer offset is slightly different

QUBPIN, con't
($P 1, Z=2$)

Views along (012)
QUBPIN (283 K)
QUBPIN03 (283 K)
QUBPIN01 (173 K) (metastable)

QUBPIN02 (173 K)

distorted $p 2_{1} 2_{1} 2$, with an approximate translation ($\mathbf{b}^{\prime}=\mathbf{b} / 2$), 2-D
Layer (100)
(H bonds shown in this view only)

RAKBUC

Layer (100)

$$
p 2_{1} 2_{1} 2, z=4, z^{\prime}=1
$$

$$
\text { axes }[010] / 2,[001]
$$ angle 89.7°

Layer (100)

$\stackrel{\curvearrowleft}{\checkmark} 90^{\circ}$

Layer (010) $p 2,22, z=2, z^{\prime}=1 / 2$ axes [001], [100], angle 89.6°
distorted $p b 2_{1} a, 2-D$ (a kryptoracemate)

Layer (001)

VEHDEU
($P 1, Z=4$)
Parts of layer (001)

distorted $p 112$ with an approximate translation $\left(a^{\prime}=[11 \overline{1}] / 2, b^{\prime}=[\overline{1} 11] / 2\right), 2-D$
([11 $\overline{1}] / 2$, and $[\overline{1} 11] / 2$
are the same because
$[11 \overline{1}] / 2+[\overline{1} 01]=[\overline{1} 11] / 2)$

YONVOM ($P 1, Z=4$)
$\stackrel{\curvearrowleft}{\vartheta}$

Structures that have two kinds of layers that alternate
alt layers, 2-D; distorted glide (pb11) (a kryptoracemate)

CEHYEW
($P 1, Z=4$)

View along a

Layers (001)

Superposition
by translation of
$3 \& 7$ and 4\&8

CICTIT ($P 1, Z=8$)

CIFGEE

Layers (001)

$p 1, z=1, z^{\prime}=1$

Views along c* and bof layers (001)

90°
c211, $z=4, z^{\prime}=1$
axes [100], [120]

$p \overline{1}, z=2, z^{\prime}=1$

Layers (001)

$p 2_{1} 11, z=2, z^{\prime}=1$
axes [100], [010], angle 92.0°

$p 1, z=1, z^{\prime}=1$
alt layers, 2-D
Views along \mathbf{a} and \mathbf{b}

GIPLID
($P 1, Z=6$)

Layers of \#1\&2 and of \#3\&4 are related by local translation; \#1\&2 is related to \#5\&6 by a local glide;
the relationship of \#3\&4 and \#5\&6 is a local 2_{1} along c^{*}

Layers (001) and their superposition with translation and rotation

$p \overline{1}$,
$z=2$,
$z^{\prime}=1$

(see also next page)
alt layers, 2-D

View along [110]

All of the approximate symmetry is local only

GIPLID,
con't
($P 1, Z=6$)

Layers (001)

c211, $z=4, z^{\prime}=1$
axes [100], [120]

$p 1, z=1, z^{\prime}=1$
alt layers, 2-D

View along b

cell constants:
7.33, 7.34, $34.14 \AA$
83.8, 86.9, 60.2°

HINKUN
($P 1, Z=6$)

Bilayers (001) c211, $z=4, z^{\prime}=1$ are related by approximate 3_{1} axes but the positions of those axes vary

Bilayers (001) and their superposition by translation

(see also next page)
alt layers, 2-D
View along b

HINKUN, con't
($P 1, Z=6$)

View along c* of molecules \#2, 3, and 5

Positions of the approximate 3_{1} axes vary

(see also next page)

It seems as if adjacent bilayers might be related by approximate 2_{1} axes, but those axes are local only

HINKUN, yet again ($P 1, Z=6$)

90°

90°

View along b

Layers (001) superimposed by rotation and translation

Layers (001)
c211, $z=2, z^{\prime}=1 / 2$
(see also next page)
alt layers, 2-D

axes [100], [1 $\overline{2} 0]$

Layers (001)
c211, $z=2, z^{\prime}=1 / 2$

HOCYEG, con't
($P 1, Z=5$)

axes [0 $\overline{1} 0]$], [2 $\overline{1} 0]$

IBIJAF01
($P 1, Z=4$)

Layers (001)

2_{1} axes but 1-D only $\left(\gamma=78.3^{\circ}\right)$

Superposition of layers (001)

Layers look like $p \overline{1}$ mimics
($z=2, z^{\prime}=1$) having different orientations but the layer of \#1\&2 has hybrid packing

QACXUN, con't
Molecules \#1, 2, 3 have the same conformation; molecule \#4 is their approximate enantiomer
pairwise overlays of \#1, 2, 3
pairwise overlays of \#1, 2, 3 with \#4

(see also next page)
alt layers, 2-D

QACXUN, yet more
($P 1, Z=4$)

Part of the layer of \#1 \& 2
hybrid packing

Part of the layer of \#3\&4
$p \overline{1}$ mimic

alt layers, 2-D
c211, $z=2, z^{\prime}=1$ for cation; $z=1, z^{\prime}=1 / 2$ for
the one anion axes [010], [2 $\overline{1} 0]$, angle 92.7°

View along a

TOJRAM
($P 1, Z=2$)
(a 1:1 salt)

Layers (001)

TOLRUK
($P 1, Z=2$)

1:1:2 MeOH solvate of a brucinium salt

Layers (001)

View along b

WIYSAZ
($P 1, Z=6$)
($Z=5+1$ is a better description than $Z=6$ because molecule \#2 is the "other" enantiomer, which is disordered ca. 1:1 with a diastereomer)
(The disorder is not shown)
$p 2_{1} 11, z=4, z^{\prime}=2$

$p \overline{1}$ mimic.
$z=2, z^{\prime}=1$

1:1:1 BEDT-TTF cation, its neutral molecule, and a $\mathrm{Br}_{2} \mathrm{SeCN}$ anion

Layers (001)

p211, $z=2, z^{\prime}=1$
(or even $p m 2 m, z=1, z^{\prime}=1 / 4$)
axes [100], [010], angle 92.1°

$p \overline{1}, z=2, z^{\prime}=1$
(cation, molecule considered to be equivalent)

View along c

Overlay by translation of the six independent layers (001) after rotation of layers B1, B2, and B3 by 180° around the layer normal

Structures that have hybrid packing
hybrid packing

BINHEO
($P 1, Z=2$)
($p 11[110]$ is $p 11 n$)
(standard setting of $p 11 b$ is $p 11 a$)

hybrid packing

$$
p 11 a p 2_{1}
$$

(1-D only)
\geqslant

JEMHEP

hybrid packing

PAXNIL02
($P 1, Z=2$)

hybrid packing

$$
211
$$

QUSQOL
(P1, Z=2)
(Formulated as a 1:1⁄2 co-crystal;
Z would be 1 for a 2:1 formulation)

The bipyridine molecules lie on approximate inversion centers
hybrid packing

$$
p 2_{1} 11 \quad p \overline{1}
$$

$\hat{N} 90^{\circ}$

Additional examples of hybrid packing

CAKQUC
2 along a near $z=0.4$;
$\overline{1}$ near $z=0.9$

$\gamma 90^{\circ}$

IXOJAG
2_{1} along \mathbf{b} near $z=0$; $\overline{1}$ near $z=1 / 2$

MASDOA
$\overline{1}$ near $y=3 / 4$;
2_{1} along a near $y=11 / 4$

Yet more examples of hybrid packing

$\frac{\eta}{\jmath} 90^{\circ}$

VOMFOS
$\overline{1}$ near $z=-0.1$;
2_{1} along \mathbf{b} near $z=0.4$

$\frac{\eta}{\gamma} 90^{\circ}$

WAXLEM
layer (011)
2_{1} along a; (ribose groups); $\overline{1}$ (uracil groups)

$\hat{N} 90^{\circ}$

YACTEC01
layer (01 $\overline{1}$)
2_{1} along a; (ribose groups); $\overline{1}$ (thymine groups)

Structures that have borderline approximate symmetry
very distorted, but still easily recognizable, C2

> ADMPOT10 ($P 1, Z=2$)
> (a hemihydrate)

$$
C 2, Z=4, Z^{\prime}=1
$$

axes [110], [110], [001];
angles 86.4, 103.6, and 83.7°
γ is quite far from 90° but the approximate 3-D symmetry easy to see, especially in a slice (001)
a slice (001)
a view along c*

a view along [110]

a view along [11 0]

View along a showing the approximate 2_{1} along \mathbf{b} that relates \#1\&2 as well as \#3\&4

View along b showing the approximate 2_{1} along a that relates \#1\&3 as well as \#2\&4

View along c* of a layer (001) showing the approximate 2_{1} along \mathbf{c}^{*} that relates \#1\&4 as well as \#2\&3 (some molecules removed for clarity)

$$
\underset{N}{90}
$$

> While the cell angles are 95.0, $96.3,90.0^{\circ}$ the approximate $P 2_{1} 2_{1} 2_{1}$ symmetry is convincing

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

View along [$4 \overline{2} 3$] of two molecules

distorted $P 2_{1}$ or hybrid packing?
CAKHIF
($P 1, Z=2$)

View along b,
$0<y<3$

$P 2_{1}, Z=2, Z^{\prime}=1$
axes [100], [010], [001]; angles 91.8, 90.0 and 92.1° but the Ph rings are parallel and therefore related by approximate inversion rather than by the approximate 2_{1} axis. Still, the $P 2_{1}$ description seems better.
translation or 1-D 2_{1} ?

EBEPEJ
($P 1, Z=2$)

The molecule could have twofold symmetry but the Ph ring rotations differ. The approximate 2_{1} along [110] is very good but the offset of H bonded columns means approximate 2_{1} symmetry can be 1-D only. Approximate translation seems a better description
very distorted, but still easily recognizable, C2

View along [010]
EPIYUY
($P 1, Z=2$)
(a 1:1:1 solvated
 co-crystal)
$C 2, Z=4, Z^{\prime}=1$
axes [012], [010], [100]; angles $87.3,91.9$, and 96.6° γ is quite far from 90° but the approximate $3-\mathrm{D}$ symmetry is obvious

$$
\frac{\curvearrowleft}{\jmath} 90^{\circ}
$$

very distorted, but still easily recognizable, F2

View along [110]

GEGYAV
($P 1, Z=2$)
(a 1:2 solvate;
$\mathrm{CHCl}_{3} \mathrm{~S}$ not shown)

$\stackrel{\downarrow}{\square} 90^{\circ}$

$0 \leq z \leq 1$ to show centering in a slice (001)
distorted $P 2_{1} 22_{1}, Z^{\prime}=1 / 2$?
(standard setting is $P 2_{1} 2_{1}$)

While the cell angles $\left(82.6,82.7,82.1^{\circ}\right.$) are all quite far from 90° the approximate symmetry is too compelling to ignore and no one layer has better approximate symmetry than does the structures as a whole

View along a

View along b

View along c

JUSZOO
($P 1, Z=2$)

The central $\mathrm{CMeCH}=\mathrm{CH}$ group and the atoms of the $\mathrm{C}_{4} \mathrm{~N}$ ring are not related by the approximate inversion or by any other approximate symmetry. The two $\overline{1}$ s are separated by $[0.49,0.42,0.00]$ and the
 conformations differ so the $P \overline{1}$ description seems appropriate

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

Molecules are planar except for the Me

Layer (011) (axes a, [011 $]$, angle 94.3°)

 group so both descriptions are possible, but the molecular tilts around [011] favor the $P \overline{1}$ description
very distorted, but still easily recognizable, $P 3_{1}$

MOMVOA ($P 1, Z=3$)
(a $1: 1 / 3: 1 / 3$ double solvate; solvents not shown)

$$
P 3_{1}, Z=3, Z^{\prime}=1
$$

axes [010], [001], [100];
angles 91.5, 91.8, and 112.5°
γ is quite far from 120° but the approximate
$3-\mathrm{D}$ symmetry is easily seen although the 3_{1} s along the long cell diagonal are very distorted

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

View along a of the structure

There seems as if there might be an approximate 2 near \mathbf{b} but it is local only.
The $P \overline{1}$ description is better but it is borderline

View of a layer (001)

Two layers (001)

Angles of a C2 cell would be 88.0, 103.9, and 94.6° so the approximate symmetry was identified as 3-D

> Layer (001)
> $c 211, z=2, z^{\prime}=1 / 2$ axes [100], $[120]$
quite distorted, but still obvious, C2

$\stackrel{\curvearrowleft}{\checkmark} 90^{\circ}$

$$
C 2, Z=4, Z^{\prime}=1
$$

axes [021], [001], [100];
angles 90.2, 92.1 and 83.6°
While γ is quite far from 90°
the approximate 3-D symmetry
is very obvious
very distorted, but still easily recognizable, $P 2_{1}$
VOJXEA
($P 1, Z=2$)
(a Br salt)
View along [100]

$P 2_{1}, Z=2, Z^{\prime}=1$
axes [001], [100], [010];
angles 96.2, 91.3, and 92.9°
α is quite far from 90° but the approximate
3-D symmetry obvious

$$
\frac{\curvearrowleft}{\jmath} 90^{\circ}
$$

$P \overline{1}$ mimic?

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

WUKYIL
($P 1, Z=2$)

View along a direction near [01 $\overline{2}$]

Molecules have approximate twofold symmetry but the direction is not simple

Approximate inversion symmetry would relate the $\mathrm{C}_{2} \mathrm{H}_{4}$ and CMe_{2} bridges of the [2.2.1] cages but it seems the best description

$P \overline{1}$ mimic or approximate translation [100]/2?

Views along \mathbf{a}, \mathbf{b}, and \mathbf{c}

(molecules could have inversion symmetry but do not)

Description as having an approximate translation is marginally more convincing than description as a $P \overline{1}$ mimic
very distorted, but still easily recognizable, C2
view along [010]

YULFIV ($P 1, Z=2$)

$C 2, Z=4, Z^{\prime}=1$
axes [012̄], [010], [100]; angles 82.4, 89.3, and 83.8° α and γ are quite far from 90° but the approximate 3-D symmetry is obvious

EMEMUG

Layer (112)

p112, $Z=2, Z^{\prime}=1$
axes [11 10$],[11 \overline{1}]$
but
the approximate 2 s look better in projection along (112) than in edge-on views of the layer

FOYZUO
($P 1, Z=4$)

borderline 2(1) $\left(p 2_{1} 11\right)$, 2-D

HIBTES
($P 1, Z=2$)

Layer (01 $\overline{1}$)

\ddots
\ddots

Layer (011 $)$ $p 2_{1} 11, z=2, z^{\prime}=1$ axes [011], [100]
but the angle is 96.4°

IDUYAK
($P 1, Z=2$)

Layer (010)
c211, $z=2, z^{\prime}=1$
axes [101], [101],
but the angle is 83.7°
and the approximate twofold axes are rotated by 16° away from [101]

Layer (100)

$$
\begin{gathered}
\text { Layer (100) } \\
\text { c211, } z=4, z^{\prime}=1 \\
\text { axes [010], }[0 \overline{12} 2] ; \\
\text { but the angle is } 95.7^{\circ} \\
\text { and } \\
\text { the twofold requires a } \\
\text { small translation along } \mathbf{b}
\end{gathered}
$$

distorted higher symmetry (cm11), 2-D? (achiral)

View along [110] of layers (001)

View along
 [110] of a layer (001)

 hydrate)View along [1 $\overline{1} 0$] of a layer (001)

borderline 2(1) $(p 211)$, 2-D

Layer (100)
c211, $z=2, z^{\prime}=1$
axes [001], [010]
but the angle is 83.7°


```
            Layer (101)
```

 Layer (101)
 c211, z=2, z'=1
 c211, z=2, z'=1
 axes [11\overline{1}], [1\overline{11]}
 axes [11\overline{1}], [1\overline{11]} but the angle is \(83.7^{\circ}\)
 but the angle is 83.7}\mp@subsup{}{}{\circ
    ```


View along [100]
of layers (011 \()\)


Layer (01̄1)
c222, \(z=4, z^{\prime}=1\) axes [100], [122], but the angle is \(95.5^{\circ}\)

View along
[100] of a layer (011 \(\overline{1}\) )


View along [100]


View along [122]


The H-bonded unit has
approximate
symmetry 222

XIKMAG
( \(P 1, Z=2\) )

Layer (10 \(\overline{1}\) )

\[
\begin{gathered}
\text { Layer }(10 \overline{1}) \\
c 211, z=4, z^{\prime}=1 \\
\text { axes [010], [212]; }
\end{gathered}
\]
but the angle is \(83.2^{\circ}\) but
the approximate 2 and \(2_{1}\) axes along \(\mathbf{b}\) are quite obvious


\[
\frac{\curvearrowleft}{\vartheta} 90^{\circ}
\]

\[
p 2_{1} 22, Z=2, Z^{\prime}=1
\]
\[
\text { axes [100], [01 } \overline{1}] \text {; }
\]
\[
\text { angles } 90.1^{\circ}
\]
but
the orientations of the molecules aren't quite right

XUQJOJ ( \(P 1, Z=2\) )

Layer (001)


Layer (001) c211, \(z=4, z^{\prime}=1\) axes [100], [120], angle \(88.2^{\circ}\)


The approximate c211 symmetry is better for the planar adenine rings than for the deoxyribose fragments. and the layers are connected by H bonds

ZODHIL (P1, Z=2)

Layer (001)

\(\gamma_{00}\)


View along (110)
(rotated by \(7.8^{\circ}\) from the view above)


Layer (010) c211, \(z=4, z^{\prime}=1\) axes [1̄10], [110], angle \(97.8^{\circ}\)

The angle of the c211 cell is quite far from \(90^{\circ}\) but the approximate symmetry is obvious
borderline 2\&2(1) (c211), 2-D

Layer (100)
c211, \(z=2, z^{\prime}=1\)
axes [010], [012], but the angle is \(82.5^{\circ}\)


View along
[010] of a layer (100)


ZUWDIG
( \(P 1, Z=2\) )

View along [012] of a layer (100)
```

