Download citation
Download citation
link to html
The polar hydro­chloro­thia­zide polymorph (I) (systematic name: 6-chloro-1,1-di­oxo-3,4-di­hydro-2H-1,2,4-benzo­thia­dia­zine-7-sul­fon­amide, C7H8ClN3O4S2) and, recently designed by us, the polar 2-aminopyridine hydrochlorothiazide water <1/1/1> (C7H8ClN3O4S2·C5H6N2·H2O), (II), have been investigated. The crystal structures of both materials were determined using the single-crystal X-ray diffraction technique. The intermolecular interactions in (I) and (II) were studied in detail via topological electron-density analysis. The obtained results showed hydrogen bonds with a character intermediate between closed-shell and shared-shell in both crystal structures. The most important hydrogen bonds in (I) are formed between sulfonamide groups, whereas in (II), water molecules play a crucial role as they interconnect 2-amino­pyridine and hydro­chloro­thia­zide molecules. Calculations of the optical properties revealed that both materials exhibit large linear birefringence, twice that of calcite. The theoretically predicted second harmonic generation efficiency is four times and five times larger than that of KH2PO4 for (I) and (II), respectively. The information gathered on intermolecular interactions and structure–property correlations was used to identify the best strategies for the future design of new functional materials of this kind.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621009914/rm5053sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621009914/rm5053Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621009914/rm5053IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520621009914/rm5053Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520621009914/rm5053IIsup5.cml
Supplementary material

zip

Zip compressed file https://doi.org/10.1107/S2052520621009914/rm5053sup6.zip
Results of experimental charge density (.CIF) and structure factors (.fco)

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621009914/rm5053sup7.pdf
Additional material including Tables S1-S10 and Figs S1 to S3

CCDC references: 2091059; 2091060

Computing details top

For both structures, data collection: CrysAlis PRO 1.171.40.14e (Rigaku Oxford Diffraction, 2018); cell refinement: CrysAlis PRO 1.171.40.14e (Rigaku Oxford Diffraction, 2018); data reduction: CrysAlis PRO 1.171.40.14e (Rigaku Oxford Diffraction, 2018); program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014). Program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2018) for (I); SHELXL2018/3 (Sheldrick, 2018) for (II). Molecular graphics: Mercury (Macrae et al., 2008) for (I); Mercury (Macrae, 2008) for (II).

6-Chloro-1,1-dioxo-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide (I) top
Crystal data top
C7H8ClN3O4S2F(000) = 304
Mr = 297.73Dx = 1.712 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.3288 (1) ÅCell parameters from 63951 reflections
b = 8.5032 (1) Åθ = 3.0–47.6°
c = 9.9467 (1) ŵ = 0.70 mm1
β = 111.290 (1)°T = 100 K
V = 577.56 (1) Å3Block, colourless
Z = 20.30 × 0.27 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
9760 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray SourceRint = 0.061
Mirror monochromatorθmax = 47.8°, θmin = 3.0°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.14e (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.537, Tmax = 1.000k = 1717
86128 measured reflectionsl = 2020
10895 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.048P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.55 e Å3
10895 reflectionsΔρmin = 0.55 e Å3
166 parametersAbsolute structure: Flack x determined using 4113 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
5 restraintsAbsolute structure parameter: 0.019 (18)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.45382 (4)0.49237 (3)0.81106 (2)0.00980 (4)
S10.34696 (4)0.51684 (3)0.24339 (2)0.01015 (4)
Cl60.00600 (5)0.62732 (6)0.72581 (3)0.02632 (8)
O2A0.64184 (13)0.45609 (11)0.80294 (9)0.01331 (12)
O1B0.54785 (13)0.56380 (13)0.29022 (9)0.01736 (16)
O2B0.35807 (14)0.37394 (11)0.86484 (9)0.01563 (14)
O1A0.29479 (15)0.36109 (11)0.18533 (9)0.01541 (13)
N2A0.48276 (15)0.64057 (12)0.91511 (9)0.01395 (14)
H2A10.391 (3)0.656 (3)0.952 (2)0.017*
H2A20.541 (3)0.720 (2)0.893 (2)0.017*
N10.05419 (14)0.63716 (16)0.20505 (9)0.01679 (17)
H10.168 (2)0.680 (3)0.188 (2)0.020*
C40.37362 (14)0.51809 (13)0.52346 (9)0.01051 (13)
H40.5043140.4826820.5459470.013*
N20.21595 (14)0.64052 (12)0.11967 (9)0.01223 (12)
H20.258 (3)0.7358 (16)0.145 (2)0.015*
C50.30188 (15)0.54103 (13)0.63368 (9)0.01094 (14)
C10.25559 (15)0.54656 (12)0.38073 (9)0.01044 (13)
C70.00735 (16)0.63072 (17)0.45601 (11)0.01598 (18)
H70.1352380.6719010.4349650.019*
C30.00539 (16)0.61488 (15)0.08221 (10)0.01414 (16)
H3A0.0681540.6888690.0045920.017*
H3B0.0281480.5066190.0447710.017*
C60.10856 (16)0.59750 (16)0.59649 (11)0.01448 (17)
C20.06223 (15)0.60408 (14)0.34252 (10)0.01235 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.01079 (8)0.01038 (9)0.00765 (7)0.00104 (7)0.00268 (6)0.00072 (6)
S10.00923 (8)0.01334 (10)0.00801 (7)0.00108 (7)0.00328 (6)0.00025 (6)
Cl60.01638 (12)0.0517 (2)0.01393 (9)0.00819 (14)0.00916 (9)0.00041 (12)
O2A0.0110 (3)0.0160 (3)0.0118 (2)0.0024 (2)0.0028 (2)0.0019 (2)
O1B0.0089 (3)0.0292 (5)0.0138 (3)0.0009 (3)0.0039 (2)0.0013 (3)
O2B0.0196 (4)0.0133 (3)0.0143 (3)0.0052 (3)0.0065 (3)0.0021 (2)
O1A0.0206 (4)0.0126 (3)0.0150 (3)0.0016 (3)0.0089 (3)0.0014 (2)
N2A0.0178 (4)0.0132 (3)0.0120 (3)0.0038 (3)0.0067 (3)0.0027 (3)
N10.0105 (3)0.0278 (5)0.0101 (3)0.0068 (3)0.0014 (2)0.0019 (3)
C40.0095 (3)0.0136 (4)0.0082 (2)0.0016 (3)0.0029 (2)0.0003 (2)
N20.0128 (3)0.0133 (3)0.0095 (2)0.0001 (3)0.0028 (2)0.0011 (2)
C50.0093 (3)0.0148 (4)0.0084 (3)0.0011 (3)0.0028 (2)0.0001 (2)
C10.0088 (3)0.0142 (4)0.0079 (3)0.0019 (3)0.0026 (2)0.0000 (2)
C70.0097 (3)0.0264 (5)0.0114 (3)0.0049 (4)0.0033 (3)0.0007 (3)
C30.0116 (4)0.0193 (4)0.0091 (3)0.0013 (3)0.0009 (3)0.0002 (3)
C60.0103 (3)0.0239 (5)0.0105 (3)0.0027 (3)0.0053 (3)0.0006 (3)
C20.0084 (3)0.0182 (4)0.0094 (3)0.0027 (3)0.0019 (2)0.0001 (3)
Geometric parameters (Å, º) top
S2—O2B1.4371 (9)N1—H10.869 (12)
S2—O2A1.4427 (9)C4—C11.3895 (12)
S2—N2A1.5952 (10)C4—C51.3910 (12)
S2—C51.7600 (9)C4—H40.9500
S1—O1B1.4304 (9)N2—C31.4664 (14)
S1—O1A1.4399 (10)N2—H20.871 (12)
S1—N21.6383 (9)C5—C61.4121 (15)
S1—C11.7444 (9)C1—C21.4145 (14)
Cl6—C61.7280 (10)C7—C61.3755 (15)
N2A—H2A10.886 (12)C7—C21.4155 (14)
N2A—H2A20.871 (12)C7—H70.9500
N1—C21.3526 (13)C3—H3A0.9900
N1—C31.4516 (14)C3—H3B0.9900
O2B—S2—O2A118.45 (6)S1—N2—H2109.4 (14)
O2B—S2—N2A106.26 (5)C4—C5—C6118.14 (8)
O2A—S2—N2A107.49 (5)C4—C5—S2118.33 (7)
O2B—S2—C5108.73 (5)C6—C5—S2123.50 (7)
O2A—S2—C5105.29 (5)C4—C1—C2121.74 (8)
N2A—S2—C5110.57 (5)C4—C1—S1120.09 (7)
O1B—S1—O1A118.65 (6)C2—C1—S1118.14 (7)
O1B—S1—N2108.58 (5)C6—C7—C2120.59 (10)
O1A—S1—N2106.94 (5)C6—C7—H7119.7
O1B—S1—C1110.30 (5)C2—C7—H7119.7
O1A—S1—C1109.02 (5)N1—C3—N2112.16 (8)
N2—S1—C1102.02 (5)N1—C3—H3A109.2
S2—N2A—H2A1116.5 (16)N2—C3—H3A109.2
S2—N2A—H2A2114.6 (15)N1—C3—H3B109.2
H2A1—N2A—H2A2120 (2)N2—C3—H3B109.2
C2—N1—C3123.48 (9)H3A—C3—H3B107.9
C2—N1—H1119.6 (15)C7—C6—C5121.79 (9)
C3—N1—H1116.8 (15)C7—C6—Cl6116.80 (8)
C1—C4—C5120.50 (9)C5—C6—Cl6121.41 (8)
C1—C4—H4119.7N1—C2—C1123.11 (9)
C5—C4—H4119.7N1—C2—C7119.69 (9)
C3—N2—S1111.79 (7)C1—C2—C7117.18 (9)
C3—N2—H2116.4 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···N2i0.89 (1)2.45 (1)3.2943 (13)160 (2)
N2A—H2A2···O1Aii0.87 (1)2.04 (1)2.8905 (13)164 (2)
N1—H1···O2Biii0.87 (1)2.10 (2)2.8935 (14)152 (2)
N2—H2···O2Aii0.87 (1)2.01 (1)2.8804 (13)178 (2)
C7—H7···O1Biv0.952.433.1251 (14)130
C3—H3A···O1Av0.992.493.4717 (14)172
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1; (iii) x, y+1/2, z+1; (iv) x1, y, z; (v) x, y+1/2, z.
6-Chloro-1,1-dioxo-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide pyridin-2-amine monosolvate monohydrate (II) top
Crystal data top
C7H8ClN3O4S2·C5H6N2·H2ODx = 1.628 Mg m3
Mr = 409.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 25539 reflections
a = 31.6312 (6) Åθ = 2.6–48.2°
b = 7.3092 (1) ŵ = 0.51 mm1
c = 7.2332 (1) ÅT = 100 K
V = 1672.31 (5) Å3Plate, colourless
Z = 40.30 × 0.30 × 0.30 mm
F(000) = 848
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
15872 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source12319 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.0000 pixels mm-1θmax = 48.6°, θmin = 2.6°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.84a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 6666
Tmin = 0.644, Tmax = 1.000k = 1515
78875 measured reflectionsl = 1415
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.008
S = 1.00Δρmax = 0.64 e Å3
15872 reflectionsΔρmin = 0.29 e Å3
308 parametersAbsolute structure: Flack x determined using 4462 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
247 restraintsAbsolute structure parameter: 0.006 (14)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.27228 (2)0.62876 (3)0.71947 (4)0.01239 (4)
S10.43378 (2)0.65095 (4)0.97138 (4)0.01624 (4)
Cl60.30819 (2)0.76429 (4)0.31624 (4)0.02185 (5)
O2A0.25597 (3)0.51402 (11)0.57498 (12)0.01813 (13)
O1W0.51342 (3)0.76765 (13)0.28502 (13)0.02053 (15)
H1W10.53983 (10)0.781 (3)0.269 (2)0.025*
H1W20.5024 (4)0.814 (3)0.1889 (16)0.025*
O2B0.27051 (3)0.56628 (12)0.90776 (11)0.01636 (12)
O1B0.42331 (3)0.49194 (13)1.07812 (13)0.02196 (15)
O1A0.43835 (3)0.82305 (13)1.06767 (14)0.02101 (15)
N2A0.24600 (3)0.81661 (12)0.71273 (14)0.01531 (12)
H2A20.2491 (6)0.881 (3)0.800 (3)0.018*
H2A10.2423 (6)0.867 (3)0.606 (3)0.018*
N10.45560 (4)0.76147 (18)0.58304 (17)0.0248 (2)
H10.4642 (7)0.786 (3)0.473 (2)0.030*
N20.47843 (3)0.61303 (15)0.86543 (15)0.01971 (16)
H20.4779 (6)0.4990 (18)0.824 (3)0.024*
C50.32634 (3)0.67104 (14)0.67439 (14)0.01329 (13)
C60.34195 (3)0.72646 (14)0.50071 (14)0.01550 (15)
C70.38433 (4)0.75663 (15)0.47146 (16)0.01855 (17)
H70.3938560.7929930.3524410.022*
C40.35499 (3)0.64753 (13)0.81795 (14)0.01388 (14)
H40.3452500.6092190.9359930.017*
C20.41385 (4)0.73428 (16)0.61581 (16)0.01765 (17)
C10.39793 (3)0.67976 (14)0.79000 (14)0.01531 (15)
C30.48746 (4)0.75361 (17)0.7265 (2)0.0229 (2)
H310.4892360.8742950.7881620.027*
H320.5152790.7279920.6693620.027*
N1B0.59542 (9)0.811 (2)0.2236 (7)0.0192 (3)0.832 (3)
C6B0.62184 (6)0.8570 (2)0.3624 (3)0.0215 (3)0.832 (3)
H6B0.6099790.8865100.4793070.026*0.832 (3)
C5B0.66513 (5)0.8633 (2)0.3433 (3)0.0275 (4)0.832 (3)
H5B0.6828680.8949230.4444070.033*0.832 (3)
C4B0.68196 (6)0.8218 (2)0.1703 (4)0.0288 (4)0.832 (3)
H4B0.7116840.8257210.1520970.035*0.832 (3)
C3B0.65588 (7)0.7751 (2)0.0259 (3)0.0267 (4)0.832 (3)
H3B0.6671360.7476350.0926150.032*0.832 (3)
C2B0.61203 (7)0.7692 (3)0.0584 (3)0.0209 (3)0.832 (3)
N2B0.58380 (6)0.7274 (2)0.0794 (2)0.0312 (3)0.832 (3)
H2B10.5943 (9)0.666 (3)0.175 (3)0.037*0.832 (3)
H2B20.5577 (5)0.684 (4)0.066 (5)0.037*0.832 (3)
N1C0.5983 (4)0.816 (10)0.225 (3)0.0192 (3)0.168 (3)
C6C0.5994 (3)0.770 (2)0.0426 (17)0.030 (2)0.168 (3)
H6C0.5735700.7474780.0204510.036*0.168 (3)
C5C0.6367 (3)0.7565 (11)0.0526 (14)0.034 (2)0.168 (3)
H5C0.6372790.7220350.1792620.041*0.168 (3)
C4C0.6736 (3)0.7945 (11)0.0429 (14)0.0303 (19)0.168 (3)
H4C0.6998070.7908570.0212880.036*0.168 (3)
C3C0.6735 (3)0.8370 (12)0.2263 (14)0.0283 (19)0.168 (3)
H3C0.6991040.8600610.2907320.034*0.168 (3)
C2C0.6352 (2)0.8454 (9)0.3151 (11)0.0219 (14)0.168 (3)
N2C0.6322 (2)0.8840 (11)0.4986 (10)0.0303 (16)0.168 (3)
H2C10.6078010.8883250.5524500.036*0.168
H2C20.6546910.9038720.5631900.036*0.168
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.01581 (8)0.01094 (7)0.01043 (8)0.00048 (6)0.00097 (7)0.00039 (7)
S10.01394 (9)0.01778 (9)0.01701 (10)0.00222 (7)0.00028 (8)0.00026 (8)
Cl60.02555 (11)0.02805 (13)0.01194 (9)0.00441 (9)0.00029 (8)0.00444 (9)
O2A0.0229 (3)0.0155 (3)0.0160 (3)0.0015 (2)0.0032 (3)0.0038 (3)
O1W0.0164 (3)0.0245 (4)0.0207 (4)0.0016 (3)0.0022 (3)0.0020 (3)
O2B0.0187 (3)0.0177 (3)0.0126 (3)0.0020 (2)0.0006 (2)0.0052 (2)
O1B0.0208 (3)0.0239 (4)0.0213 (4)0.0009 (3)0.0016 (3)0.0064 (3)
O1A0.0191 (3)0.0214 (4)0.0225 (4)0.0033 (3)0.0007 (3)0.0051 (3)
N2A0.0186 (3)0.0138 (3)0.0135 (3)0.0024 (2)0.0004 (3)0.0001 (3)
N10.0175 (4)0.0329 (5)0.0238 (5)0.0041 (3)0.0086 (3)0.0065 (4)
N20.0147 (3)0.0198 (4)0.0246 (4)0.0038 (3)0.0029 (3)0.0011 (3)
C50.0160 (3)0.0130 (3)0.0110 (3)0.0011 (3)0.0008 (2)0.0005 (3)
C60.0202 (4)0.0151 (3)0.0111 (3)0.0035 (3)0.0021 (3)0.0016 (3)
C70.0207 (4)0.0203 (4)0.0146 (4)0.0047 (3)0.0056 (3)0.0031 (3)
C40.0160 (3)0.0141 (3)0.0116 (3)0.0013 (3)0.0011 (3)0.0005 (3)
C20.0177 (4)0.0183 (4)0.0169 (4)0.0037 (3)0.0054 (3)0.0020 (3)
C10.0149 (3)0.0165 (4)0.0145 (4)0.0025 (3)0.0017 (3)0.0009 (3)
C30.0164 (4)0.0238 (5)0.0284 (5)0.0018 (3)0.0062 (4)0.0008 (4)
N1B0.0158 (5)0.0209 (10)0.0211 (4)0.0006 (11)0.0018 (5)0.0011 (4)
C6B0.0199 (6)0.0180 (6)0.0266 (7)0.0001 (5)0.0022 (5)0.0014 (5)
C5B0.0187 (6)0.0171 (6)0.0467 (11)0.0010 (4)0.0062 (6)0.0034 (6)
C4B0.0182 (7)0.0142 (6)0.0540 (14)0.0003 (5)0.0080 (7)0.0011 (7)
C3B0.0252 (8)0.0167 (6)0.0384 (10)0.0021 (5)0.0136 (7)0.0015 (6)
C2B0.0232 (8)0.0168 (6)0.0226 (7)0.0044 (7)0.0046 (6)0.0011 (5)
N2B0.0366 (8)0.0347 (8)0.0224 (6)0.0066 (6)0.0021 (5)0.0049 (5)
N1C0.0158 (5)0.0209 (10)0.0211 (4)0.0006 (11)0.0018 (5)0.0011 (4)
C6C0.028 (5)0.028 (4)0.035 (5)0.008 (5)0.010 (4)0.002 (4)
C5C0.046 (5)0.018 (3)0.039 (5)0.005 (3)0.015 (4)0.000 (3)
C4C0.020 (3)0.016 (3)0.055 (6)0.001 (2)0.008 (3)0.007 (3)
C3C0.019 (3)0.016 (3)0.050 (6)0.004 (2)0.014 (3)0.006 (3)
C2C0.017 (3)0.014 (2)0.035 (4)0.0034 (19)0.014 (3)0.000 (2)
N2C0.031 (3)0.029 (3)0.030 (4)0.002 (3)0.006 (3)0.003 (3)
Geometric parameters (Å, º) top
S2—O2A1.4360 (8)C3—H320.9900
S2—O2B1.4376 (8)N1B—C2B1.341 (4)
S2—N2A1.6058 (9)N1B—C6B1.349 (3)
S2—C51.7679 (10)C6B—C5B1.377 (2)
S1—O1B1.4340 (10)C6B—H6B0.9500
S1—O1A1.4451 (10)C5B—C4B1.393 (3)
S1—N21.6306 (10)C5B—H5B0.9500
S1—C11.7469 (11)C4B—C3B1.374 (3)
Cl6—C61.7311 (11)C4B—H4B0.9500
O1W—H1W10.8495 (14)C3B—C2B1.407 (3)
O1W—H1W20.8493 (14)C3B—H3B0.9500
N2A—H2A20.80 (2)C2B—N2B1.373 (3)
N2A—H2A10.86 (2)N2B—H2B10.890 (13)
N1—C21.3561 (16)N2B—H2B20.890 (13)
N1—C31.4478 (19)N1C—C2C1.353 (12)
N1—H10.859 (12)N1C—C6C1.362 (14)
N2—C31.4654 (17)C6C—C5C1.371 (10)
N2—H20.886 (12)C6C—H6C0.9500
C5—C41.3890 (14)C5C—C4C1.384 (11)
C5—C61.4093 (14)C5C—H5C0.9500
C6—C71.3751 (15)C4C—C3C1.362 (10)
C7—C21.4102 (17)C4C—H4C0.9500
C7—H70.9500C3C—C2C1.373 (9)
C4—C11.3930 (14)C3C—H3C0.9500
C4—H40.9500C2C—N2C1.361 (9)
C2—C11.4143 (15)N2C—H2C10.8651
C3—H310.9900N2C—H2C20.8634
O2A—S2—O2B119.34 (5)N2—C3—H31109.1
O2A—S2—N2A106.94 (5)N1—C3—H32109.1
O2B—S2—N2A106.27 (5)N2—C3—H32109.1
O2A—S2—C5108.39 (5)H31—C3—H32107.8
O2B—S2—C5105.54 (5)C2B—N1B—C6B118.5 (2)
N2A—S2—C5110.22 (5)N1B—C6B—C5B123.4 (2)
O1B—S1—O1A117.98 (6)N1B—C6B—H6B118.3
O1B—S1—N2108.37 (6)C5B—C6B—H6B118.3
O1A—S1—N2106.72 (6)C6B—C5B—C4B117.54 (17)
O1B—S1—C1110.62 (5)C6B—C5B—H5B121.2
O1A—S1—C1108.78 (5)C4B—C5B—H5B121.2
N2—S1—C1103.29 (5)C3B—C4B—C5B120.50 (16)
H1W1—O1W—H1W2104.2 (2)C3B—C4B—H4B119.8
S2—N2A—H2A2114.6 (14)C5B—C4B—H4B119.8
S2—N2A—H2A1117.5 (14)C4B—C3B—C2B118.20 (18)
H2A2—N2A—H2A1118.4 (19)C4B—C3B—H3B120.9
C2—N1—C3123.14 (11)C2B—C3B—H3B120.9
C2—N1—H1120.0 (15)N1B—C2B—N2B116.3 (2)
C3—N1—H1116.9 (15)N1B—C2B—C3B121.9 (2)
C3—N2—S1111.84 (8)N2B—C2B—C3B121.8 (2)
C3—N2—H2115.5 (15)C2B—N2B—H2B1116 (2)
S1—N2—H2107.7 (13)C2B—N2B—H2B2127 (2)
C4—C5—C6118.25 (9)H2B1—N2B—H2B2105 (3)
C4—C5—S2118.14 (7)C2C—N1C—C6C118.9 (12)
C6—C5—S2123.61 (8)N1C—C6C—C5C121.8 (11)
C7—C6—C5121.66 (10)N1C—C6C—H6C119.1
C7—C6—Cl6117.20 (8)C5C—C6C—H6C119.1
C5—C6—Cl6121.13 (8)C6C—C5C—C4C117.4 (9)
C6—C7—C2120.87 (10)C6C—C5C—H5C121.3
C6—C7—H7119.6C4C—C5C—H5C121.3
C2—C7—H7119.6C3C—C4C—C5C122.0 (8)
C5—C4—C1120.45 (9)C3C—C4C—H4C119.0
C5—C4—H4119.8C5C—C4C—H4C119.0
C1—C4—H4119.8C4C—C3C—C2C117.9 (8)
N1—C2—C7119.89 (10)C4C—C3C—H3C121.0
N1—C2—C1122.95 (11)C2C—C3C—H3C121.0
C7—C2—C1117.15 (10)N1C—C2C—N2C116.3 (9)
C4—C1—C2121.61 (10)N1C—C2C—C3C121.9 (10)
C4—C1—S1120.23 (8)N2C—C2C—C3C121.8 (8)
C2—C1—S1118.15 (8)C2C—N2C—H2C1120.6
N1—C3—N2112.55 (10)C2C—N2C—H2C2120.4
N1—C3—H31109.1H2C1—N2C—H2C2119.0
O1B—S1—N2—C3169.19 (9)C7—C2—C1—S1179.98 (8)
O1A—S1—N2—C362.79 (11)O1B—S1—C1—C440.21 (10)
C1—S1—N2—C351.82 (10)O1A—S1—C1—C490.89 (10)
O2A—S2—C5—C4131.79 (8)N2—S1—C1—C4155.99 (9)
O2B—S2—C5—C42.86 (9)O1B—S1—C1—C2139.14 (9)
N2A—S2—C5—C4111.50 (8)O1A—S1—C1—C289.76 (10)
O2A—S2—C5—C647.93 (10)N2—S1—C1—C223.36 (10)
O2B—S2—C5—C6176.86 (9)C2—N1—C3—N236.43 (17)
N2A—S2—C5—C668.79 (10)S1—N2—C3—N161.00 (12)
C4—C5—C6—C70.18 (15)C2B—N1B—C6B—C5B0.0 (15)
S2—C5—C6—C7179.54 (8)N1B—C6B—C5B—C4B0.8 (8)
C4—C5—C6—Cl6178.38 (8)C6B—C5B—C4B—C3B0.5 (3)
S2—C5—C6—Cl61.90 (13)C5B—C4B—C3B—C2B0.5 (3)
C5—C6—C7—C20.48 (16)C6B—N1B—C2B—N2B178.5 (8)
Cl6—C6—C7—C2178.13 (9)C6B—N1B—C2B—C3B1.0 (15)
C6—C5—C4—C10.54 (15)C4B—C3B—C2B—N1B1.3 (8)
S2—C5—C4—C1179.73 (8)C4B—C3B—C2B—N2B178.68 (19)
C3—N1—C2—C7175.60 (11)C2C—N1C—C6C—C5C1 (8)
C3—N1—C2—C15.8 (2)N1C—C6C—C5C—C4C1 (4)
C6—C7—C2—N1178.78 (11)C6C—C5C—C4C—C3C2.6 (15)
C6—C7—C2—C10.08 (16)C5C—C4C—C3C—C2C1.4 (13)
C5—C4—C1—C20.96 (16)C6C—N1C—C2C—N2C178 (4)
C5—C4—C1—S1179.71 (8)C6C—N1C—C2C—C3C2 (8)
N1—C2—C1—C4178.02 (11)C4C—C3C—C2C—N1C1 (4)
C7—C2—C1—C40.64 (16)C4C—C3C—C2C—N2C178.9 (8)
N1—C2—C1—S11.32 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N1Ba0.85 (1)1.80 (1)2.651 (3)177 (2)
O1W—H1W2···O1Ai0.85 (1)2.21 (1)2.8764 (13)136 (1)
N2A—H2A2···O2Aii0.80 (2)2.22 (2)2.9919 (13)164.5 (19)
N2A—H2A1···O2Biii0.86 (2)2.09 (2)2.9101 (12)160.1 (19)
N1—H1···O1W0.86 (1)2.07 (2)2.8273 (14)146 (2)
N2—H2···O1Wiv0.89 (1)1.99 (1)2.8542 (14)165 (2)
C7—H7···O1Ai0.952.503.4184 (15)162
C5Ba—H5Ba···O2Av0.952.583.4448 (18)151
N2Ba—H2B1a···O1Bvi0.89 (1)2.20 (2)2.9592 (19)143 (3)
N2Ba—H2B2a···N2i0.89 (1)2.61 (2)3.459 (2)161 (3)
C5Cb—H5Cb···N2Cbi0.952.623.380 (12)138
N2Cb—H2C1b···O1Avii0.872.573.133 (7)124
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1/2; (v) x+1/2, y+3/2, z; (vi) x+1, y+1, z3/2; (vii) x+1, y+2, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds