

STRUCTURAL SCIENCE

 CRYSTAL ENGINEERING MATERIALSVolume 77 (2021)
Supporting information for article:

On the transfer of theoretical multipole parameters for restoring static electron density and revealing and treating atomic anharmonic motion. Features of chemical bonding in crystals of an isocyanuric acid derivative

Sergey A. Shteingolts, Julia K. Voronina, Liliya F. Saifina, Marina M. Shulaeva, Vyacheslav E. Semenov and Robert R. Fayzullin

Figure S1 Fractal dimension distributions $d^{f}\left(\rho_{0}\right)$ of the residual electron density $\rho_{0}(\boldsymbol{r})$ in the unit cells of the studied isocyanuric acid derivative calculated for UMM (a), UMM-GC (b), KRMM (c), KRMM-GC (d), final MM after the transfer procedure before (e) and after the second round of anharmonic refinement (f).

Figure S2 DRK scatterplots for UMM (a), UMM-GC (b), KRMM (c), KRMM-GC (d), final MM after the transfer procedure before (e) and after the second round of anharmonic refinement (f).

Figure S3 Contour maps of deformation electron density $\delta \rho(\boldsymbol{r})(a-c)$ and the Laplacian of electron density $\nabla^{2} \rho(\boldsymbol{r})(d-f)$ in the planes of the labelled oxygen atoms of the sulfonyl (a, d) and ester $(b, c, e$, f) functional groups calculated from the wavefunction for the optimized crystal structure of 5-substituted-1,3-dimethyl-isocyanurate. The maps (a, d) are plotted in a plane perpendicular to the S 1 O1 bond line, maps (b, e) are perpendicular to the $\mathrm{C} 13-\mathrm{O} 5$ bond line, and maps (c, f) are perpendicular to the plane of the C13-O14-C15 fragment. The contour step for (a, b, c) is set to $0.1 \mathrm{e} \AA^{-3}$. The width and length of each map are $1 \AA$. The black dotted lines on the maps correspond to the atomic planes as shown in Figure S8. Hereinafter, blue, green and red colours are reserved for positive, zero and negative function values, respectively; the contour step for the $\delta \rho(\boldsymbol{r})$-maps is equal to $0.1 \mathrm{e} \AA^{-3}$; the logarithmic scale in the form of $\pm 2,4,8 \cdot 10^{n}(-3 \leq n \leq 2)$ e \AA^{-5} is adopted for $\nabla^{2} \rho(\boldsymbol{r})$-maps.

Figure S4 Contour maps of residual electron density $\rho_{0}(\boldsymbol{r})$ in the plane of the labelled atoms of the isocyanurate moiety calculated for UMM (a), UMM-GC (b), KRMM (c), KRMM-GC (d), final MM after the transfer procedure before (e) and after second round of anharmonic refinement (f). Blue, green and red colours correspond to positive, zero and negative function values, respectively; the contour step is set to $0.05 \mathrm{e}^{-3}$. Residual density is calculated for the whole resolution range.

Figure S5 Contour maps of residual electron density $\rho_{0}(\boldsymbol{r})$ in the plane labelled atoms of the sulfonyl group calculated for UMM (a), UMM-GC (b), KRMM (c), KRMM-GC (d), final MM after the transfer procedure before (e) and after second round of anharmonic refinement (f). Blue, green and red colours correspond to positive, zero and negative function values, respectively; the contour step is set to 0.05 e \AA^{-3}. Residual density is calculated for the whole resolution range.

Figure S6 Contour maps of deformation electron density $\delta \rho(\boldsymbol{r})$ in the plane of the ester group calculated for UMM (a), final MM after the transfer procedure (b) and theoretical MM (c). The atoms shown in the maps are not concerned by anharmonic modelling. Blue, green and red colours correspond to positive, zero and negative function values, respectively; the contour step is set to $0.1 \mathrm{e} \AA^{-3}$.

Figure S7 Contour maps of deformation electron density $\delta \rho(\boldsymbol{r})$ in the plane of the labelled atoms of the sulfonyl group calculated for UMM (a), UMM-GC (b), KRMM (c), KRMM-GC (d), final MM after the transfer procedure (e) and theoretical $\mathrm{MM}(f)$. Blue, green and red colours correspond to positive, zero and negative function values, respectively; the contour step is set to 0.1 e \AA^{-3}.

Figure S8 Contour maps of the Laplacian of electron density $\nabla^{2} \rho(\boldsymbol{r})$ in the planes of labelled atoms for the isocyanurate moiety, ester fragment and sulfonyl group calculated from final MM after the transfer procedure (a, d, g), theoretical $\mathrm{MM}(b, e, h)$ and wavefunction-derived electron density (c, f, i). The logarithmic scale in the form of $\pm 2,4,8 \cdot 10^{n}(-3 \leq n \leq 2)$ e \AA^{-5} is adopted; blue, green and red colours are reserved for positive, zero and negative function values, respectively.

Figure S9 Isosurfaces (blue solid) of approximated local electronic temperature at $t(\boldsymbol{r})=0.38$ a.u. for the experimental model.

Figure S10 Superposition of theoretical multipole-derived gradient fields of electron density $\nabla \rho(\boldsymbol{r})$, kinetic $\nabla \varphi_{k}(\boldsymbol{r})$ and electrostatic $\nabla \varphi_{e s}(\boldsymbol{r})$ potentials coloured in black, orange and blue, respectively, in the plane of homoatomic N1 $\cdots \mathrm{N} 5$ contacts constituting the centrosymmetric $\pi \cdots \pi$ interaction. Critical points $(3,-1)$ in $\rho(\boldsymbol{r})$ are shown by magenta rhombuses. Gradient paths in $\rho(\boldsymbol{r})$ connecting the field attractors are shown by red lines.

Figure S11 Packing of 5-substituted-1,3-dimethylisocyanurate in the unit cell $\left(P 2_{1} / c\right)$.

Table S1 Laplacian critical points $(3,+3)$ calculated from solid-state theoretical calculations in regions of valence shell charge concentrations of oxygen atoms with their selected geometrical and topological characteristics.

Atom	CP (3, +3)	Angle, ${ }^{\circ}$	d, \AA	$\rho_{C P}, \mathrm{e} \AA^{-3}$	$\nabla^{2} \rho_{C P}, \mathrm{e} \AA^{-5}$	$l_{1}, \mathrm{e} \AA^{-7}$	$l_{2}, \mathrm{e} \AA^{-7}$	$l_{3}, \mathrm{e} \AA^{-7}$
O2	CP1	145.94	0.334	6.562	135.53	-16545.50	-433.63	-351.55
	CP2		0.334	6.544	134.57	-16430.07	-431.10	-345.75
O4	CP1	146.50	0.334	6.562	135.73	-16550.08	-436.50	-356.13
	CP2		0.334	6.549	134.90	-16467.91	-432.14	-351.38
O6	CP1	145.87	0.334	6.547	134.98	-16477.31	-427.83	-355.60
	CP2		0.334	6.571	136.26	-16619.97	-433.37	-360.69
O1	CP1	152.05	0.338	6.201	116.72	-14890.16	-423.87	-30.38
	CP2		0.337	6.165	114.79	-14646.76	-416.98	-21.98
O3	CP1	151.05	0.338	6.193	116.44	-14840.27	-425.54	-28.17
	CP2		0.337	6.186	116.17	-14796.17	-421.95	-30.46
O5	CP1	143.24	0.333	6.594	137.87	-16731.55	-421.85	-400.11
	CP2		0.333	6.588	137.40	-16739.26	-418.45	-397.80
O9	CP1	137.67	0.332	6.825	149.76	-17654.29	-722.14	-336.44
	CP2		0.332	6.887	153.12	-18020.83	-740.89	-354.49
O14	CP1	n / a	0.334	6.655	137.90	-16855.66	-561.72	-41.70

 $+3)$ and the nuclei; $\rho_{C P}$ is the value of electron density at $\mathrm{CP}(3,+3)$ in $\nabla^{2} \rho(\boldsymbol{r}) ; \nabla^{2} \rho_{C P}$ is the Laplacian of electron density at $\mathrm{CP}(3,+3)$ in $\nabla^{2} \rho(\boldsymbol{r}) ; l_{1}, l_{2}$ and l_{3} are the eigenvalues of Hessian matrix of Laplacian of electron density.

Table S2 Selected properties integrated over the volumes of the atomic basins of the studied isocyanuric acid derivative in the crystal.

For each atomic basin, the first, second and third rows of the table contain data obtained from the exact theoretical periodic wavefunction and derived electron density (optimized geometry), the theoretical multipole model (optimized geometry) and the final, experimental model after the transfer procedure.

Atom	$\rho(\Omega)$	$V(\Omega)$	$L(\Omega)$	$G(\Omega)$	Atom	$\rho(\Omega)$	$V(\Omega)$	$L(\Omega)$	$G(\Omega)$
S1	13.696	7.787	0.0168	397.165	C13	4.407	4.904	0.0086	36.958
	13.892	8.411	0.0115	399.060		4.605	5.342	0.0070	37.342
	13.439	6.459	0.0192	398.844		4.316	4.547	0.0124	37.009
O2	9.170	20.018	0.0007	75.614	C15	5.351	8.682	0.0388	37.505
	9.001	19.125	0.0038	75.723		5.749	9.798	0.0031	38.275
	9.140	16.195	0.0012	75.843		5.952	11.445	0.0070	38.286
O4	9.176	18.730	0.0005	75.609	H3A	1.024	8.129	-0.0089	0.635
	9.011	17.775	-0.0009	75.727		0.938	8.061	0.0016	0.585
	9.184	18.331	0.0013	75.816		0.719	5.623	0.0052	0.440
O6	9.169	16.973	0.0000	75.623	H3B	1.017	7.299	-0.0117	0.637
	9.022	16.064	0.0013	75.755		0.925	7.358	0.0006	0.581
	9.204	19.206	0.0028	75.689		0.718	6.006	0.0048	0.431
O9	9.061	13.347	0.0000	75.511	H3C	1.013	7.904	-0.0170	0.636
	8.826	12.604	0.0012	75.616		0.922	7.607	0.0007	0.580
	8.970	12.898	0.0011	75.322		0.725	5.891	0.0049	0.435
O1	9.316	18.077	-0.0003	75.607	H5A	0.999	6.648	-0.0090	0.630
	9.217	17.413	-0.0017	75.668		0.908	6.554	0.0015	0.571
	9.427	17.676	-0.0002	75.290		0.794	5.475	0.0011	0.478
O3	9.315	19.524	0.0002	75.606	H5B	1.026	6.579	-0.0099	0.638
	9.211	18.744	0.0008	75.660		0.940	6.430	0.0008	0.589
	9.425	19.236	0.0005	75.323		0.784	7.437	0.0007	0.471
O5	9.159	18.124	0.0000	75.647	H5C	1.015	8.936	-0.0108	0.630
	9.032	17.619	0.0005	75.740		0.925	8.811	0.0005	0.576
	9.246	18.129	0.0010	75.484		0.760	5.495	0.0012	0.458
O14	9.084	14.280	0.0015	75.599	H7A	1.010	5.474	-0.0122	0.643
	8.873	13.821	-0.0003	75.682		0.922	5.531	0.0004	0.583
	9.053	14.389	-0.0028	75.405		0.908	5.413	0.0010	0.559
N1	8.128	10.448	-0.0003	55.234	H7B	0.992	5.687	-0.0101	0.632
	7.842	9.994	0.0012	55.534		0.909	5.781	0.0010	0.571
	8.057	10.553	0.0003	55.491		0.893	5.688	0.0000	0.545
N3	8.123	10.534	0.0006	55.233	H8A	1.052	8.331	-0.0075	0.646
	7.834	10.123	0.0014	55.524		0.967	7.997	0.0009	0.604
	8.114	10.877	0.0033	55.539		0.938	7.759	0.0010	0.567
N5	8.126	10.627	0.0029	55.226	H8B	1.030	7.005	-0.0101	0.641
	7.841	10.240	0.0020	55.524		0.950	6.992	0.0007	0.594
	8.079	10.860	0.0014	55.480		0.942	6.679	0.0008	0.578
C2	4.224	4.336	0.0017	36.895	H10A	1.035	7.249	-0.0096	0.642
	4.533	4.978	0.0002	37.356		0.952	7.257	0.0008	0.595
	4.148	4.113	0.0099	36.942		0.931	7.004	0.0011	0.567
C4	4.222	4.236	0.0017	36.895	H10B	1.036	7.955	-0.0080	0.642
	4.533	4.718	0.0047	37.362		0.952	8.035	0.0006	0.594

	4.167	3.926	0.0063	36.954		0.923	7.890	0.0007	0.562
C6	4.224	4.135	0.0119	36.893	H11A	0.959	5.773	-0.0179	0.611
	4.536	4.730	0.0022	37.364		0.887	5.994	0.0011	0.551
	4.155	4.003	0.0058	36.939		0.899	6.130	0.0012	0.541
C3	5.425	8.303	0.0364	37.565	H11B	0.990	7.190	-0.0102	0.616
	5.827	9.134	0.0038	38.378		0.925	7.398	0.0005	0.574
C5	6.284	14.091	-0.0003	38.475		0.903	7.600	-0.0002	0.536
	5.446	8.475	0.0348	37.573	H12A	0.930	4.718	-0.0178	0.599
	5.847	9.226	0.0044	38.389		0.868	4.791	0.0014	0.535
C7	6.190	12.457	0.0057	38.499		0.886	4.717	0.0019	0.546
	5.492	7.061	0.0333	37.635	H12B	0.983	7.415	-0.0125	0.613
	5.809	7.598	0.0043	38.373		0.920	7.615	0.0006	0.570
C8	5.840	7.981	0.0084	38.286		0.907	7.230	0.0008	0.553
	5.359	6.945	0.0195	37.534	H15A	1.014	7.029	-0.0079	0.635
	5.619	7.110	0.0056	38.184		0.924	7.189	0.0003	0.577
C10	5.609	7.457	0.0116	38.051		0.829	5.885	0.0005	0.498
	5.325	6.893	0.0223	37.507	H15B	1.001	6.341	-0.0092	0.629
	5.619	7.332	0.0081	38.167		0.916	6.379	0.0008	0.572
C11	5.599	7.628	0.0092	38.026		0.834	6.326	0.0011	0.505
	5.904	8.210	0.0302	37.861	H15C	1.024	6.957	-0.0056	0.635
	6.040	8.371	0.0064	38.438		0.934	7.047	0.0007	0.584
C12	6.159	8.876	0.0071	38.436		0.826	6.709	0.0006	0.497
	5.930	8.487	0.0316	37.880	Total	191.980	391.754	n/a	1628.364
	6.072	8.781	0.0054	38.449		191.977	391.878	n / a	1638.275
	6.086	8.971	0.0075	38.312		191.962	391.261	n/a	1633.509

For properties integrated over the volumes of the atomic basins Ω, the units of measurements are as follows: electron density $\rho(\Omega)$ [e], atomic basin volume $V(\Omega)\left[\AA^{3}\right]$, atomic Lagrangian $L(\Omega)\left[\mathrm{e} \AA^{-2}\right]$, kinetic energy $G(\Omega)$ [a.u.]. Potential $\mathcal{V}(\Omega)$ and total $H(\Omega)$ electronic energies can be calculated according to the general virial theorem: $\mathcal{V}(\Omega)=-2 G(\Omega)$ and $H(\Omega)=-G(\Omega)=\frac{1}{2} \mathcal{V}(\Omega)$. For the multipole-derived models, $g(\boldsymbol{r})$ was approximated according to Kirzhnits.

Table S3 Selected topological characteristics of the bond critical points for intermolecular contacts between the two heterocyclic moieties of the studied isocyanuric acid derivative in the crystal.

For each interaction, the first, second and third rows of the table contain data obtained from the exact theoretical periodic wavefunction and derived electron density (optimized geometry), the theoretical multipole model (optimized geometry) and the final, experimental model after the transfer procedure.

Contact $i-j$	$R_{i j}$	d_{i}	d_{j}	ρ_{b}	$\nabla^{2} \rho_{b}$	$\lambda_{1_{b}}$	$\lambda_{2_{b}}$	$\lambda_{3_{b}}$	g_{b}	v_{b}	h_{b}
	3.34505	1.690	1.664	0.0389	0.5477	-0.1020	-0.0683	0.7180	$4.42 \cdot 10^{-3}$	$-3.15 \cdot 10^{-3}$	$1.27 \cdot 10^{-3}$
N1 $\cdots \mathrm{N} 5$	3.34505	1.662	1.689	0.0357	0.4877	-0.0819	-0.0482	0.6193	$3.83 \cdot 10^{-3}$	$-2.61 \cdot 10^{-3}$	$1.23 \cdot 10^{-3}$
	$3.3632(3)$	1.705	1.668	0.0383	0.4837	-0.0771	-0.0386	0.6000	$3.86 \cdot 10^{-3}$	$-2.71 \cdot 10^{-3}$	$1.16 \cdot 10^{-3}$
	3.20282	1.675	1.639	0.0419	0.6047	-0.1029	-0.0849	0.7926	$4.97 \cdot 10^{-3}$	$-3.67 \cdot 10^{-3}$	$1.30 \cdot 10^{-3}$
O6 $\cdots \mathrm{N} 3$	3.20282	1.577	1.643	0.0393	0.5562	-0.0916	-0.0699	0.7181	$4.39 \cdot 10^{-3}$	$-3.01 \cdot 10^{-3}$	$1.38 \cdot 10^{-3}$
	$3.2135(3)$	1.578	1.651	0.0415	0.5609	-0.0916	-0.0675	0.7206	$4.47 \cdot 10^{-3}$	$-3.13 \cdot 10^{-3}$	$1.35 \cdot 10^{-3}$

Subscript b denotes the values given at a corresponding saddle critical points (3,-1) in $\rho(\boldsymbol{r})$ or this point itself. $R_{i j}$ is the covalent bond distance [\AA]; d_{i} and d_{j} are the distances from atom i or j to a corresponding bond critical point; ρ_{b} is the value of electron density at a BCP $\left[\mathrm{e} \AA^{-3}\right] ; \nabla^{2} \rho_{b}$ is the Laplacian of electron density $\left[\mathrm{e} \AA^{-5}\right] ; \lambda_{1_{b}}$, $\lambda_{2_{b}}$ and $\lambda_{3_{b}}$ are the eigenvalues of Hessian matrix of electron density [$\mathrm{e} \AA^{-5}$]; g_{b}, v_{b} and h_{b} are the kinetic, potential, and total electronic energy densities [a.u.], respectively. For the multipole-derived models, $g(\boldsymbol{r})$ was approximated according to Kirzhnits.

