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Routines for extracting the volumetric and principal expansion coefficients were implemented using 

Python (v3), for compatibility with the CSD Python API. The methodology largely follows the 

implementation of PASCal (Cliffe & Goodwin, 2012), except where highlighted below. 

S1. Extracting the volumetric expansion coefficient 

Since the unit-cell volume is directly available for each CSD entry, the volumetric expansion coefficient 

can be extracted from the linear LS fit of V vs T. The gradient defines V/T, but it is necessary to 

choose a reference value for V. For consistency across the large range of structure families, the reference 

volume is extrapolated to 298 K, as calculated by the parameters of the LS fit. 

V = 1E6 × (LS gradient / V (298 K)) ppm K–1 for the plot of V vs T. 

The V value calculated by PASCal is based on an LS fit of T vs V (since this enables weights to be 

applied conveniently to the T values). For good linear fits, there is little difference between a fit of V vs 

T and T vs V. For data sets deviating significantly from linearity, however, the value obtained from T 

vs V can differ substantially from that obtained using V vs T. A consistent approach with T as the 

independent variable is applied in this paper and recommended for comparison of V to the 

presented distributions. See ABELAU below for an example. 

S2. Calculating the strain tensor 

Calculation of the strain tensor follows the description given for PASCal. At the heart of the method is 

the transformation matrix to yield Cartesian axes from the crystal axes, which depends on the 

convention chosen. Schlenker (1978), PASCal and the Bilbao Crystallographic Server all choose the 

Institute of Radio Engineers (IRE) convention: z(cart) parallel to crystal c, x(cart) parallel to crystal a*, 

and y(cart) perpendicular to x(cart) and z(cart). The same convention was implemented in the Python 

code, and the resulting strain tensors were validated against the STRAIN module of the Bilbao server. 

S3. Calculating the principal expansion coefficients 

The three principal strains, L/L, are obtained as the eigenvalues of the strain tensors. For each data 

point above the minimum temperature, the strain tensor is calculated relative to the lowest temperature, 

then a linear LS fit is applied. As for PASCal, the eigenvalues at each step are sorted by magnitude and 

assumed to be in the same sequence through the range. The resulting L values are relative to L at the 

minimum temperature in the supplied range. For consistency with the approach applied to the volume 

fit, the values are re-scaled to refer to L at T = 298 K. 

L = 1E6 × LS gradient / (1 + L/L (298 K)) ppm K–1 for the plot of each eigenvalue vs T. 
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S4. Calculating errors 

Standard uncertainties are calculated using heteroscedasticity-consistent standard errors, defined at: 

https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors. For V, the quoted 

standard uncertainty is the standard error on the gradient of V vs T, divided by the reference volume 

extrapolated to 298 K. For L, the quoted standard uncertainty is the standard error on the gradient of 

L/L vs T, divided by the reference value of L/L extrapolated to 298 K. 

S5. Fitting of the distributions 

Histograms were produced using EXCEL, with bin ranges chosen to provide a smooth representation 

of the distribution. Continuous distributions were fitted to the derived histogram values using the 

SOLVER within EXCEL. For the volumetric coefficient, a normal distribution was applied. Three 

parameters (scale, mean, su) were optimised so as to minimise the sum of the squared differences 

between the normal distribution and the value in each histogram bin. The temperature points for the fit 

were taken to be the midpoint of each bin. For the principal coefficients and the anisotropy measure, 

the histogram was initially fitted using a skew normal distribution 

(https://en.wikipedia.org/wiki/Skew_normal_distribution), defined in EXCEL as follows: 

scale * NORM.DIST(T, mean, su, FALSE) * NORM.DIST(alpha*T, alpha*mean, su, TRUE) 

The first term is a symmetrical normal distribution and the second term is a cumulative normal 

distribution, multiplied by the skew parameter alpha. Four parameters (scale, mean, su, alpha) were 

optimised so as to minimise the sum of the squared differences between the normal distribution and the 

value in each histogram bin. The resulting continuous skew normal distribution was then approximated 

by two half normal distributions, defined with a common mean, but individual standard deviations and 

a single scale parameter linked by the ratio (su(R)/su(L)). The four parameters defining these two half 

normal distributions were optimised so as to minimise the squared differences relative to the continuous 

skew normal distribution over the full range of the plot, with this sum of squares including the lower 

half of the left distribution and the upper half of the right distribution. The values quoted in the paper 

are rounded to integers, to avoid any false indication of precision. 

  

https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
https://en.wikipedia.org/wiki/Skew_normal_distribution
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S6. Chemical diagrams for the structures referred to in the text 
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S7. Selected examples 

S7.1. ABELAU (MacGillivray et al., 2000; Hutchins et al., 2018b) 

Table S1 This is noted in the text to be an example of a family containing a significant outlier at 

173 K. 

Refcode T (K) a (Å) b (Å) c (Å)  (°)  (°)  (°) V (Å3) 

ABELAU 173 9.749 11.367 14.273 111.668 90.000 90.000 1469.926 

ABELAU01 190 9.749 11.324 14.245 111.822 90.000 90.000 1459.897 

ABELAU02 210 9.753 11.316 14.248 111.746 90.000 90.000 1460.435 

ABELAU03 230 9.770 11.322 14.267 111.713 90.000 90.000 1466.124 

ABELAU04 250 9.776 11.314 14.269 111.658 90.000 90.000 1466.780 

ABELAU05 270 9.789 11.314 14.283 111.607 90.000 90.000 1470.797 

ABELAU06 291 9.802 11.312 14.292 111.539 90.000 90.000 1474.028 

 

 

Figure S1 [Blue line shows the LS fit to all data points; red line shows LS fit excluding ABELAU 

at 173 K] 

 

Table S2 Python code: including all structures in the fit of V vs T (R2 = 0.3729): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

0 –23 (20) 26 (12) 49 (5) 52 52 (37) 

173 –23 (20) 26 (12) 49 (5) 52 52 (37) 

298 –23 (20) 26 (11) 49 (5) 52 51 (36) 
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Python code: omitting ABELAU from the fit of V vs T (R2 = 0.9633): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

0 –12 (3) 56 (4) 57 (2) 101 102 (8) 

190 –12 (3) 56 (4) 56 (2) 100 100 (8) 

298 –12 (3) 55 (4) 56 (2) 99 99 (8) 

 

PASCal (unit weights on T): including ABELAU: 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

173 –23 (17) 26 (10) 49 (4) 52 136 (51) 

For this case, with the poor linear fit to all of the points, the volumetric coefficient derived from a fit 

of T vs V is significantly different from the sum of the principal coefficients. 

 

PASCal (unit weights on T): omitting ABELAU: 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

190 –13 (2) 55 (3) 56 (1) 98 102 (7) 

 

S7.2. MNYPDO 

Table S3 The largest identified structure family, and noted in the text to contain a clear outlier at 

296 K. The orthorhombic structure permits an independent check on L/L calculations and 

extrapolation of L to 298 K, by a direct plot of L vs T. 

 
Refcode T (K) a (Å) b (Å) c (Å)  (°)  (°)  (°) V (Å3) 

MNPYDO01 106 5.135 6.094 20.890 90.000 90.000 90.000 653.704 

MNPYDO04 120 5.133 6.109 20.953 90.000 90.000 90.000 657.090 

MNPYDO05 135 5.134 6.111 20.992 90.000 90.000 90.000 658.589 

MNPYDO06 150 5.134 6.113 21.022 90.000 90.000 90.000 659.795 

MNPYDO07 165 5.134 6.114 21.059 90.000 90.000 90.000 661.102 

MNPYDO08 180 5.135 6.116 21.098 90.000 90.000 90.000 662.587 

MNPYDO09 195 5.136 6.116 21.132 90.000 90.000 90.000 663.867 

MNPYDO10 210 5.137 6.119 21.172 90.000 90.000 90.000 665.542 

MNPYDO11 225 5.138 6.120 21.216 90.000 90.000 90.000 667.173 

MNPYDO12 240 5.139 6.122 21.260 90.000 90.000 90.000 668.856 

MNPYDO30 255 5.141 6.123 21.300 90.000 90.000 90.000 670.507 

MNPYDO13 270 5.143 6.126 21.343 90.000 90.000 90.000 672.455 

MNPYDO14 285 5.146 6.128 21.383 90.000 90.000 90.000 674.310 

MNPYDO26 296 4.986 6.001 20.343 90.000 90.000 90.000 608.622 
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Figure S2 [Blue line shows the LS fit to all data points; red line shows LS fit excluding 

MNPYDO26 at 296 K] 

 

Table S4 Python code: including all structures in the fit of V vs T (R2 = 0.0045): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

0 –45 (50) –37 (53) 53 (66) –29 –26 (164) 

106 –45 (51) –37 (53) 52 (66) –30 –26 (165) 

298 –46 (51) –37 (53) 52 (65) –31 –27 (166) 

 

Python code: omitting MNPYDO26 from the fit of V vs T (R2 = 0.9933): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

0 12 (2) 23 (4) 129 (2) 164 166 (5) 

106 12 (2) 23 (4) 127 (2) 162 163 (5) 

298 12 (2) 23 (4) 124 (2) 159 158 (5) 

 

PASCal (unit weights on T): omitting MNPYDO26: 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

106 12 (2) 23 (4) 127 (2) 162 164 (5) 

 

Check using a linear fits of V vs T and L vs T (calculations in EXCEL): 

T (K) a (Å) b (Å) c (Å) V (Å3) LS fit (a) LS fit (b) LS fit (c) LS fit (V) 

106 5.135 6.094 20.890 653.704 5.1318 6.1039 20.9032 654.781 

120 5.133 6.109 20.953 657.090 5.1326 6.1058 20.9404 656.273 

135 5.134 6.111 20.992 658.589 5.1336 6.1079 20.9803 657.872 

150 5.134 6.113 21.022 659.795 5.1345 6.1100 21.0202 659.471 
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165 5.134 6.114 21.059 661.102 5.1354 6.1121 21.0600 661.069 

180 5.135 6.116 21.098 662.587 5.1364 6.1141 21.0999 662.668 

195 5.136 6.116 21.132 663.867 5.1373 6.1162 21.1398 664.267 

210 5.137 6.119 21.172 665.542 5.1382 6.1183 21.1797 665.866 

225 5.138 6.120 21.216 667.173 5.1392 6.1204 21.2195 667.465 

240 5.139 6.122 21.260 668.856 5.1401 6.1225 21.2594 669.063 

255 5.141 6.123 21.300 670.507 5.1410 6.1246 21.2993 670.662 

270 5.143 6.126 21.343 672.455 5.1420 6.1266 21.3392 672.261 

285 5.146 6.128 21.383 674.310 5.1429 6.1287 21.3790 673.860 

 

Gradients and extrapolated values for L and V based on the linear fits: 

 a b c V 

Gradient * 1E6 62.12 138.89 2658.27 106586.3 

Intercept (= value at 0 K) 5.1252 6.0891 20.6214 643.483 

Value at 106 K 5.1318 6.1039 20.9032 654.781 

Value at 298 K 5.1437 6.1305 21.4136 675.245 

 

Calculated coefficients based directly on the LS fitted values of L and V: 

T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) V (ppm K–1)

0 
62.12 / 

5.1252 
12.12 

138.89 / 

6.0891 
22.81 

2658.27 / 

20.6214 
128.91 

106586.3 / 

643.483 
165.64 

106 
62.12 / 

5.1318 
12.10 

138.89 / 

6.1039 
22.75 

2658.27 / 

20.9032 
127.17 

106586.3 / 

654.781 
162.78 

298 
62.12 / 

5.1437 
12.08 

138.89 / 

6.1305 
22.66 

2658.27 / 

21.4136 
124.14 

106586.3 / 

675.245 
157.85 

 

S7.3. AHEJAZ (Das et al., 2010) 

Table S5 This example is noted in the text to be an exceptional case reported in the literature. The 

orthorhombic structure has principal axes aligned with the crystal axes, which permits independent 

checks on L/L calculations, and extrapolation of L to 298 K, by a direct plot of L vs T.  

 

Refcode T (K) a (Å) b (Å) c (Å)  (°)  (°)  (°) V (Å3) 

AHEJAZ 225 4.616 11.699 15.191 90.000 90.000 90.000 820.335 

AHEJAZ01 240 4.686 11.656 15.089 90.000 90.000 90.000 824.109 

AHEJAZ02 255 4.743 11.638 15.025 90.000 90.000 90.000 829.313 

AHEJAZ03 270 4.785 11.618 14.965 90.000 90.000 90.000 831.988 

AHEJAZ04 285 4.819 11.615 14.938 90.000 90.000 90.000 836.189 

AHEJAZ05 300 4.845 11.607 14.905 90.000 90.000 90.000 838.196 

AHEJAZ06 315 4.868 11.607 18.883 90.000 90.000 90.000 840.984 

AHEJAZ07 330 4.880 11.596 14.873 90.000 90.000 90.000 841.589 
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[Shaded rows are not used for the primary analysis (restricted to the range 90–300 K), but mentioned below 

when comparing to the results reported by Das et al.] 

 

 

Figure S3 Python code: fit of V vs T (R2 = 0.9868): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

0 –231 (31) –96 (21) 766 (79) 439 319 (19) 

225 –244 (33) –98 (21) 653 (68) 311 298 (18) 

298 –249 (34) –99 (22) 623 (64) 275 291 (17) 

 

PASCal (unit weights on T): 

Reporting T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) L V (ppm K–1) 

225 –244 (27) –98 (17) 654 (55) 312 300 (13) 

 

Check using a linear fits of V vs T and L vs T (calculations in EXCEL): 

T (K) a (Å) b (Å) c (Å) V (Å3) LS fit (a) LS fit (b) LS fit (c) LS fit (V) 

225 4.616 11.699 15.191 820.335 4.6357 11.6819 15.1576 820.863 

240 4.686 11.656 15.089 824.109 4.6810 11.6647 15.1021 824.527 

255 4.743 11.638 15.025 829.313 4.7263 11.6474 15.0466 828.190 

270 4.785 11.618 14.965 831.988 4.7717 11.6302 14.9911 831.853 

285 4.819 11.615 14.938 836.189 4.8170 11.6130 14.9356 835.517 

300 4.845 11.607 14.905 838.196 4.8623 11.5958 14.8800 839.180 

 

Gradients and extrapolated values for L and V based on the linear fits: 

 a B c V 

Gradient * 1E6 3020.95 –1148.57 –3700.95 244228.6 
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Intercept (= value at 0 K) 3.9560 11.9403 15.9903 765.912 

Value at 225 K 4.6357 11.6819 15.1576 820.863 

Value at 298 K 4.8562 11.5981 14.8874 838.692 

 

Calculated coefficients based directly on the LS fitted values of L and V: 

T L(1) (ppm K–1) L(2) (ppm K–1) L(3) (ppm K–1) V (ppm K–1)

0 
3020.95 / 

3.9560 
763.6 

–1148.57 / 

11.9403 
–96.2 

–3700.95 / 

15.9903 
–231.5 

244228.6 / 

765.912 
318.9 

225 
3020.95 / 

4.6357 
651.7 

–1148.57 / 

11.6819 
–98.3 

–3700.95 / 

15.1576 
–244.2 

244228.6 / 

820.863 
297.5 

298 
3020.95 / 

4.8562 
622.1 

–1148.57 

/11.5981 
–99.0 

–3700.95 / 

14.8874 
–248.6 

244228.6 / 

838.692 
291.2 

 

Comparison of values calculated in this paper to the values reported in Das et al., 2010 

The coefficients reported by Das et al. are calculated directly from the (orthorhombic) cell parameters, 

relative to the values at 330 K, e.g. L = 1/(330 – T) * (L(330) – L(T)). 

 
T (K) a (ppm K–1) b (ppm K–1) c (ppm K–1) V (ppm K–1) 

225 514.9 –84.6 –203.6 241.0 

240 441.7 –57.5 –161.4 231.0 

255 374.3 –48.3 –136.3 194.9 

270 322.4 –31.6 –103.1 190.1 

285 274.6 –36.4 –97.1 142.6 

300 237.0 –31.6 –71.7 134.7 

315 155.7 –63.2 –44.8 47.5 

330 0 0 0 0 

 

This corresponds to taking a sequence of linear approximations between each lower temperature and 

the upper temperature of 330 K: 
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Figure S4 The results are then quoted as ranges: the expansion coefficients (ppm K–1) of the axes 

lie in the range 156 < a < 515; –32 < b < –85 and –48 < c < –204 over the temperature range 225–

330 K. 

 

The approach in this current paper is to assume linearity of the plot of V (or L) against T (recalling that 

this is a necessity to deal with the vast majority of the data set extracted from the CSD), thereby 

producing a single fitted value for the gradient. Considering the full data range for AHEJAZ (225–330 

K), this produces the following plots and coefficients: 
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Reference T a (ppm K–1) b (ppm K–1) c (ppm K–1) V (ppm K–1) 

298 K 509 –73 –194 251 

330 K 501 –73 –195 249 

 

 


