

STRUCTURAL SCIENCE

 CRYSTAL ENGINEERING MATERIALSVolume 77 (2021)
Supporting information for article:

Octamolybdate isomers concomitance in metastable crystal structures isolated using homoleptic Co (II)/(III)-complexes as structuring directing templates

Reinaldo Atencio, Alexander Briceño, Julia Bruno-Comenarez, Pedro Silva, Laura Rodríguez, Eleida Sosa, Erick Limones, Yesenia Pacheco, Julio Cáceres and Joel Vielma

Figure S1 Photo of the solid obtained using 1:6 Co:Mo molar ratio at $160^{\circ} \mathrm{C}$, in which phases 1-5 are identified by SC-XRD takin into account different morphology and color.

Figure S2 Graphical representation for octamolybdate isomers found in the crystal structures of $\mathbf{1}$. Ball-and-stick model of the α - (a) and β-isomer (c). Polyhedral models that display an evident difference between the geometry forms of the α - (b) and β-isomer (d).

Figure S3 (a) Ball-and-stick and (b) polyhedral representation for the γ-isomer found in the crystal structures of 2.

Figure S4 Pseudo-tetrahedral site where $\mathrm{NH}_{4}{ }^{+}$is hosted in the crystal structure of 2. Formed hydrogen bonds agree well with the local site. N1A-H1AA $\cdots \mathrm{O} 22: 1.83 \AA$ and 142.6°. N1A-H1AB $\cdots \mathrm{O} 4: 2.13 \AA$ and 142.6°. N1A-H1AC $\cdots \mathrm{O} 101: 2.01 \AA$ and $155.2^{\circ} . \mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AD} \cdots \mathrm{O} 2:$ $1.91 \AA$ and 150.4°.

Figure S5 Graphical representation of the crystal structure of 3, showing channels parallel to the a direction where most of the crystallization water molecules are accommodated.

Figure S6 (a) Building block observed in the crystal structure of 4, including labeling. (b) 1Dpolymer running parallel to the a-axis found in 4 .

Figure S7 Comparison between P-XRD pattern from solid II-T140 (obtained at $140^{\circ} \mathrm{C}$ and Co:Mo ratio: 1.8) and those simulated from SC-XRD of $\alpha-\beta(\mathbf{1}), \gamma-\beta$ (2) and $\beta_{\mathrm{cs}}-\beta_{\mathrm{gp}}$ (3), Polymer 4, and Polymer 5 (VAFYOQ).

Figure S8 Comparison between P-XRD pattern from solid II-T160 (obtained at $160{ }^{\circ} \mathrm{C}$ and Co:Mo ratio: 1.8) and II-T180 (obtained at $160^{\circ} \mathrm{C}$ and Co :Mo ratio: 1.8) and those simulated from SC-XRD of 1-5.

* β_{cs} and β_{gp} correspond to the β-isomers located on a center of symmetry and on a general position in the crystal structure of 3, respectively.

Figure S9 Relative contributions of each intermolecular contact as calculated from HS analysis of each octamolybdate found in $\alpha-\beta$ (1), $\gamma-\beta$ (2), and $\beta_{\mathrm{cp}}-\beta_{\mathrm{gp}}$ (3).

Figure S10 Relative contributions of intermolecular contacts as calculated from HS analysis of cations $\left[\mathrm{Co}(\mathrm{bpy})_{3}\right]^{\mathrm{n}}$ ($\mathrm{n}=2$ or 3) found in the crystal structures of $\mathbf{1 - 3 .} \Delta$ or Λ correspond to the configuration of the isomer observed in its respective asymmetry units for each crystal structure.

Figure S11 FT-IR for compound 1.

Figure S12 FT-IR for compound 2.

Figure S13 FT-IR for compound 3.

Figure S14 Thermal Gravimetric curves for compounds $\left\{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{Co}(\mathrm{bpy})_{3}\right]\left[\left(\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)_{0.5}(\beta\right.\right.$ $\left.\left.\left.\mathrm{Mo}_{8} \mathrm{O}_{26}\right)_{0.5}\right]\right\} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2)$ and $\left\{\left[\mathrm{Co}(\text { bpy })_{3}\right]_{2}\left[\left(\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)_{0.5}\left(\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)\right]\right\} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (3).

Figure S15 Room temperature EPR spectra for $\mathbf{1}$ and $\mathbf{3}$.

Figure S16 Comparison of P-XRD simulated from SC-XRD of $\mathbf{1}$ (black) vs. P-XRD of selected crystals of $\mathbf{1}$ (red).

Figure S17 Comparison of P-XRD simulated from SC-XRD of 2 (black) vs. P-XRD of selected crystals of 2 (red).

Figure S18 Comparison of P-XRD simulated from SC-XRD of $\mathbf{3}$ (black) vs. P-XRD of selected crystals of $\mathbf{3}$ (red).

