

Volume 76 (2020)

Supporting information for article:

Crystal structures of two very similar 2×2×2 superstructures of γ-brass related phases in ternary Ir-Cd-Cu system

Sivaprasad Ghanta, Nilanjan Roy and Partha Pratim Jana

Samp	Nominal	Refined	EDS Composition	VEC	Mai	Ir ₈ Cd ₄	Element	CuO
le	Compositi	Composition	(atomic %)		n	1	al	(I4/mm
code	on	(atomic %)	(phas		Cd	m)
		(atomic 70)			C			
S1	Ir_8Cd_{41}	Ir _{16.33} Cd _{83.67}	$Ir_{16.09(1)}Cd_{83.91(1)}$	1.96	+			
S2	Ir ₈ Cd ₃₈ Cu ₃	Ir _{7.252} Cd _{85.666} Cu _{7.1}	$Ir_{9.18(0)}Cd_{83.08(0)}Cu_{7.75(}$	1.91	+	+		
		02	0)					
S3	Ir ₈ Cd ₃₇ Cu ₄	$Ir_{6.655}Cd_{85.809}Cu_{7.5}$	$Ir_{7.97(1)}Cd_{83.04(1)}Cu_{8.98(}$	1.92	+	+		
		35	1)					
S6	Ir ₈ Cd ₃₆ Cu ₅	$Ir_{5.474}Cd_{77.809}Cu_{16.}$	$Ir_{6.85(0)}Cd_{77.08(1)}Cu_{16.0}$	1.83	+	+	+	
		716	6(1)					
S4	Ir ₈ Cd ₃₃ Cu ₈	$Ir_{5.717}Cd_{79.040}Cu_{15.}$	$Ir_{6.35(1)}Cd_{77.93(1)}Cu_{15.7}$	1.85	+	+	+	
		243	2(1)					
S5	$Ir_8Cd_{29}Cu_{12}$	$Ir_{5.164}Cd_{79.461}Cu_{15.}$	$Ir_{6.48(1)}Cd_{77.17(1)}Cu_{16.3}$	1.85	+	+		
		374	5(1)					
S7	$Ir_8Cd_{40}Cu_1$	-	$Ir_{16.60(1)}Cd_{82.19(1)}Cu_{1.2}$		+			
			1(1)					
S8	Ir ₈ Cd ₃₉ Cu ₂	-	$Ir_{15.95(1)}Cd_{82.29(1)}Cu_{1.7}$		+			+
			6(1)					

Table S1Loaded reaction compositions and refined compositions obtained by single crystal X-raydiffraction in the Ir-Cd-Cu system.

*Two unidentified extra peaks were observed for S8 at $2\theta = 34.9$, and 44.9 deg.

e/a for Ir, Cu and Cd was adopted from Mizutani *et al. (Ir* =1.60VEC, Cu =1VEC, and Cd =2.03VEC). (Mizutani & Sato, 2017)

Sample	Nominal	lattice parameters (Å)		Space
code	Composition			Group
S1	Ir_8Cd_{41}	14.8582(9)	15.9929(10)	$R\overline{3}$
S2	Ir ₈ Cd ₃₈ Cu ₃	19.9487(10)		F 4 3m
S3	Ir ₈ Cd ₃₇ Cu ₄	19.961(7)		$F \overline{4}3m$
S6	Ir ₈ Cd ₃₆ Cu ₅	19.7296(19)		F 4 3 <i>m</i>
S4	Ir ₈ Cd ₃₃ Cu ₈	19.741(3)		F 4 3m
S5	$Ir_8Cd_{29}Cu_{12}$	19.639(2)		$F \overline{4}3m$
S7	$Ir_8Cd_{40}Cu_1$	14.8402(3)	15.9931(4)	$R\overline{3}$
S8	Ir ₈ Cd ₃₉ Cu ₂	14.8383(4)	15.9860(5)	R 3

Table S2 Loaded reaction compositions and refined lattice parameters obtained by powder XRD data.

Table S3 $2 \times 2 \times 2$ superstructure of γ -brass related phases with isolated cluster units (Cubic space group: $F \ \overline{4}3m$).

Compound	cF	Cluster types*			
(Fe,Ni)Zn _{6.5}	408	γ	bcc/y	α -Mn/ γ (-CC)	Ti ₂ Ni
(Lidin <i>et al</i> ., 1994)		Zn ₂₆	$(Fe, Ni)_{10.68}^{CC, OT, OH} Zn_{16}$	Zn ₂₉	(Fe, Ni) ^{OT} Zn ₁₈
$Ir_{7+7\delta}Zn_{97\text{-}11\delta}$	406-	γ	bcc/γ	α -Mn/ γ	Ti ₂ Ni
(Hornfeck <i>et</i> <i>al.</i> , 2004)	403	Ir ₄ ^{OT} Zn ₂₂	$Ir_{1-\delta+m}^{CC,OT,OH}Zn_{26-m}$	$Zn_{29-3\delta}$	Ir ₄ ^{OT} Zn ₁₈
Ir _{6.698} Cd _{86.366}	403-	γ	bcc	Ti ₂ Ni	γ
Cu _{7.584} (S3)	404	(Cu, Cd) ^{IT,OT} Cd ^{OH,CO} ₁₈	$Cu_1^{CC}(Cu, Cd)_4Cd_4^{CB}(Cu, Cd)_6^{OH}Cd$	Ir ₄ ^{OT} Cd ₁₈ ^{OH,CO}	$(Cu, Cd)_4^{IT}(Ir, Cd)_4^{OT}Cd_{18}^{OH}$
Ir _{5.873} Cd _{81.199}	411	γ	α-Mn	Ti ₂ Ni	γ
Cu _{15.659} (S4)		$Cu_{10}^{IT,OH}(Cu,Cd)_4^{OT}Cd_{12}^{Cd}$	$Cu_1^{CC}(Cu, Cd)_4^{OT}Cd_{24}^{TT,CO}$	$(Cu, Cd)_6^{OH} Ir_4^{OT} Cd_{12}^{CC}$	$\operatorname{Cd}_{22}^{\mathrm{IT,OH,CO}}(\mathrm{Ir,Cd})_{4}^{\mathrm{OT}}$

*Cluster types are presented around the high symmetric points of the unit cell.

700µm

Figure S1 Image of the broken quartz tubes after heat treatment. Some amount of elemental cadmium vaporized and condensed on the inner wall of quartz tubes confirmed by SEM-EDS analysis.

Figure S2 Measured compositions of Ir-Cu-Cd alloys with two closely γ -brass related phases are having the same space group ($F \ \overline{4}3m$). Additionally, the binary phases are represented with sky blue color (in the CuCd & IrCd system).

Figure S3 Profile fit for the loaded composition Ir₈Cd₄₁ (S1) (using Jana2006).

Figure S4 Profile fit for the loaded composition Ir₈Cd₃₈Cu₃(S2).

Figure S5 Profile fit for the loaded composition Ir₈Cd₃₇Cu₄ (S3).

Figure S6 Profile fit for the loaded composition Ir₈Cd₃₆Cu₅ (S6).

Figure S7 Profile fit for the loaded composition Ir₈Cd₃₃Cu₈ (S4).

Figure S8 Profile fit for the loaded composition $Ir_8Cd_{29}Cu_{12}$ (S5).

Figure S9 Profile fit for the loaded composition Ir₈Cd₄₀Cu₁ (S7).

Figure S10 Profile fit for the loaded composition Ir₈Cd₃₉Cu₂ (S8).

Figure S11 SEM Image with EDS distribution maps of loaded composition Ir_8Cd_{41} (S1) (Colour Code for all samples: Green colour, Ir ; Blue colour, Cd; Brown colour, Cu) (Scale: 9µm).

Figure S12 SEM Image with EDS distribution maps of loaded composition $Ir_8Cd_{38}Cu_3$ (S2) (Scale: 10 μ m).

Figure S13 SEM Image with EDS distribution maps of loaded composition $Ir_8Cd_{38}Cu_4$ (S3) (Scale: 10 μ m).

Figure S14 SEM Image with EDS distribution maps of loaded composition Ir₈Cd₃₈Cu₅(S6) (Scale: 10 µm).

Figure S15 SEM Image with EDS distribution maps of loaded composition Ir8Cd33Cu8 (S4) (Scale: $10 \mu m$).

Figure S16 SEM Image with EDS distribution maps of loaded composition $Ir_8Cd_{29}Cu_{12}$ (S5) (Scale: 20 μ m).

Figure S17 SEM Image with EDS distribution maps of loaded composition $Ir_8Cd_{40}Cu_1$ (S7) (Scale: 10 μ m).

Figure S18SEM Image with EDS distribution maps of loaded composition $Ir_8Cd_{39}Cu_2$ (S8) (Scale: 8 μ m).