

Volume 75 (2019)

Supporting information for article:

Structural, theoretic and spectroscopic analysis of 2-methyl-5-nitroaniline salts with various inorganic acids

Volodymyr Medviediev and Marek Daszkiewicz

Table S1	Experimental details			
	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$C_7H_9N_2O_2$ ·Br	$C_7H_9N_2O_2\cdot I$	$C_7H_9N_2O_2\cdot NO_3$	$C_7H_9N_2O_2$ ·Cl
M _r	233.07	280.06	215.17	188.61
Crystal system, space group	Monoclinic, $P12_1/m1$	Triclinic, P-1	Monoclinic, <i>P</i> 12 ₁ / <i>m</i> 1	Triclinic, P-1
Temperature (K)	295	295	295	295
a, b, c (Å)	8.5689 (3), 6.4113 (2), 8.8248 (4)	6.5954 (2), 8.7764 (2), 8.8564 (3)	8.1234 (3), 6.6252 (2), 8.5799 (3)	7.9756 (1), 7.9803 (1), 28.2986 (3)
$\alpha,\beta,\gamma(^{\circ})$	90, 110.200 (4), 90	72.140 (2), 84.002 (2), 81.830 (2)	90, 98.712 (3), 90	84.468 (1), 84.229 (1), 89.897 (1)
$V(Å^3)$	455.00 (3)	481.98 (3)	456.44 (3)	1783.61 (4)
Ζ	2	2	2	8
Radiation typ	e Mo <i>K</i> α	Μο Κα	Μο Κα	Μο <i>Κ</i> α
μ (mm ⁻¹)	4.48	3.29	0.14	0.39
Crystal size (mm)	$0.75 \times 0.57 \times 0.14$	$0.48 \times 0.37 \times 0.11$	$0.37 \times 0.34 \times 0.06$	$0.25 \times 0.22 \times 0.21$

Data collection

Diffractometer Xcalibur, Atlas		Xcalibur, Atlas	Xcalibur, Atlas	Xcalibur, Atlas	
Absorption	Gaussian	Gaussian	Multi-scan	Multi-scan	
correction	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	
	1.171.38.43 (Rigaku	1.171.38.43 (Rigaku	1.171.38.43 (Rigaku	1.171.38.43 (Rigaku	
	Oxford Diffraction,	Oxford Diffraction,	Oxford Diffraction,	Oxford Diffraction,	
	2015) Numerical	2015) Numerical	2015) Empirical	2015) Empirical	

	absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.127, 0.604	0.274, 0.719	0.945, 1.000	0.983, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14243, 1279, 1187	14289, 2472, 2281	16584, 1273, 1078	50750, 7878, 6977
<i>R</i> _{int}	0.038	0.029	0.023	0.020
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.676	0.676	0.676	0.641
Refinement				
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.024, 0.058, 1.06	0.022, 0.050, 1.08	0.041, 0.119, 1.09	0.052, 0.138, 1.13
No. of reflections	1279	2472	1273	7878
No. of parameters	87	112	102	441
No. of restraints	0	0	0	0
H-atom treatment	H atoms treated by a mixture of independent	H-atom parameters constrained	H atoms treated by a mixture of	H-atom parameters constrained

	and constrained		independent and constrained			
			refinement			
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.55, -0.34 0.66, -0.79		0.27, -0.23	0.53, -0.42		
	(5)		(6)			
Crystal data						
Chemical formula	$C_7H_9N_2O_2$ ·HO4S		$2(C_7H_9N_2O_2)\cdot 2(I_3)\cdot H_2O$			
$M_{ m r}$	250.23		1085.74			
Crystal system, space group	, Orthorhombic, <i>Pna</i> 2 ₁		Monoclinic, $P2_1/c$			
Temperature (K)	295		295			
a, b, c (Å)	12.8927 (2), 4.97471 (10), 31.5518 (7)		11.2876 (3), 13.9536 (3), 17.5279 (5)			
α, β, γ (°)	90, 90, 90		90, 96.808 (3), 90			
$V(\text{\AA}^3)$	2023.66 (7)		2741.24 (13)			
Ζ	8		4			
Radiation type	Μο <i>Κ</i> α		Μο <i>Κ</i> α			
$\mu (mm^{-1})$	0.34		6.83			
Crystal size (mm)	$0.46 \times 0.21 \times 0.06$		$0.36\times0.3\times0.25$			
Data collection	I.					
Diffractometer	Xcalibur, Atlas		Xcalibur, Atlas			
Absorption correction	Gaussian <i>CrysAlis PRO</i> 1.171.38.4 Diffraction, 2015) Numer correction based on gauss over a multifaceted crysta	3 (Rigaku Oxford rical absorption sian integration al model	Gaussian <i>CrysAlis PRO</i> 1.171.38. Diffraction, 2015) Nume correction based on gaus multifaceted crystal mod	43 (Rigaku Oxford erical absorption ssian integration over a del Empirical absorption		

	Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.874, 0.980	0.186, 0.307
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	84145, 5220, 4577	68555, 5817, 3896
R _{int}	0.060	0.054
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.676	0.633
Refinement		
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.044, 0.120, 1.06	0.038, 0.070, 1.04
No. of reflections	5220	5817
No. of parameters	295	270
No. of restraints	1	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{max}, \Delta \rho_{min} (e \ { m \AA}^{-3})$	0.51, -0.35	1.12, -0.89
Absolute structure	Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).	
Absolute structure parameter	0.15 (4)	

Computer programs: *CrysAlis PRO* 1.171.38.43 (Rigaku OD, 2015), ShelXT (Sheldrick, 2015), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015), Olex2 (Dolomanov *et al.*, 2009).

Table S2Relative energy corresponding to conformation of H2Me5NA+ ion found in crystalstructures 1-6. E_1 – energy [kcal/mol] refers to the rotation of nitro group relative to the structure ofglobal minimum, E_2 – energy refers to the simultaneous rotation of ammonio and methyl groupsrelative to the structure of global minimum, $E_1 + E_2$ – sum of E_1 and E_2 energies, E_{tot} – energycalculated for conformations corresponding to the crystal data.

Compd	Mol. No.	dihC4C5N2O1	E1,	dihC ₆ C ₁ N ₁ H	dihC ₃ C ₂ C ₇ H	E ₂	$E_1 + E_2$	E _{tot}
(1)		0	0	0	0	0	0	0
(2)		8.31	0.10	-9.04	0.42	0.02	0.12	0.12
(3)		0	0	0	0	0	0	0
(4)	А	-0.41	< 0.01	23.03	-21.33	0.35	< 0.36	0.36
	В	-6.80	0.07	-17.45	-18.24	0.24	0.31	0.32
	С	-2.57	0.01	-14.03	-25.17	0.36	0.37	0.37
	D	1.67	0.01	-24.78	-4.35	0.13	0.14	0.13
(5)	А	11.37	0.20	-7.44	-30.08	0.43	0.63	0.62
	В	-1.04	< 0.01	-0.53	26.31	0.33	< 0.34	0.35
(6)	А	15.75	0.38	33.94	5.73	0.23	0.61	0.61
	В	5.29	0.04	18.21	-0.28	0.07	0.11	0.11

Figure S1 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)Br (1).

Figure S2 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)I (2).

Figure S3 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)NO₃ (3).

Figure S4 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)Cl (4).

Figure S5 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)HSO₄ (5).

Figure S6 Room temperature powder FT-IR and FT-Raman spectra of (H2Me5NA)I₃·0.5H₂O (6).

Figure S7 Room temperature powder far-infrared spectra of (H2Me5NA)I₃·0.5H₂O (6).