


Volume 75 (2019)

Supporting information for article:

Insight into the role of pre-assembly and desolvation in crystal nucleation: a case of p-nitrobenzoic acid

Shuyi Zong, Jingkang Wang, Hao Wu, Qi Liu, Yunhui Hao, Xin Huang, Dehui Wu, Guanchen Zhou and Hongxun Hao

## S1. Solvation free energy calculation

The solvation free energy was calculated by Materials Studio (MS) 7.0. The amorphous cell model composed of PNBA and solvent in terms of molar solubility was chosen in the study, and every cubic periodic cell contained 1000 molecules. The Geometry Optimization simulation, both MD simulation and Solvation Free Energy calculation were calculated by Forcite module with COMPASS (Condensedphase Optimized Molecular Potentials for Atomistic Simulation Studies) force field (Bunte et al., 2000; Vyalov et al., 2017) which was used to describe the interaction throughout the whole simulations at a fully atomistic level, and the temperature was controlled by Nosé-Hoover-Langevin (NHL) thermostat. The Smart method combining conjugate gradient and steepest descent approach is applied to the energy minimization process, which speeds up the computation. First, the periodic cell was subjected to 100,000-step MM-based geometry optimization to remove the irrelevant contacts. Then, the NVT ensemble dynamic simulation was carried out at the experimental temperature to ensure that the system was in a good state of relaxation and balance. The simulation time was set to 1000 ps and the time step of each dynamic process was set to 1 fs. The van der Waals interaction was computed by atom-based cutoff distance of 15.5 tÅ and the electrostatic interaction was calculated by Ewald summation method with accuracy of 0.418 J/mol. The energy deviation was limited to 209,000 kJ/mol. The obtained configuration served as the initial structure for the solvation free energy calculation which was simulated by thermodynamic integration method. The solvation free energy  $\Delta G_{solv}$  is the sum of the ideal free energy ( $\Delta G_{id}$ ), the van der Waals free energy ( $\Delta G_{vdw}$ ) and the electrostatic free energy  $(\Delta G_{elec})$ , as follows:

$$\Delta G_{solv} = \Delta G_{id} + \Delta G_{vdw} + \Delta G_{elec} \tag{1}$$

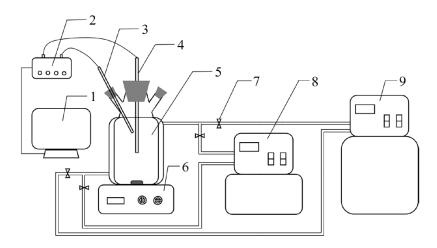
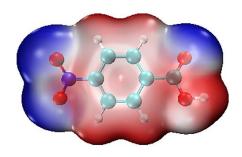




Figure S1 Experimental apparatus for induction time measurements. (1. Data acquisition computer;2. Turbidimeter controller;3. Temperature probe;4. Turbidity sensor;5. Glass crystallizer withjacket;6. Magnetic stirrer;7. Water stop pliers;8. Thermostat used for controlling high temperature;9. Thermostat used for controlling low temperature.)



**Figure S2** The van der Waals surface electrostatic potential of PNBA plotted by Multiwfn and VMD (Lu & Chen, 2012a; Lu & Chen, 2012b).

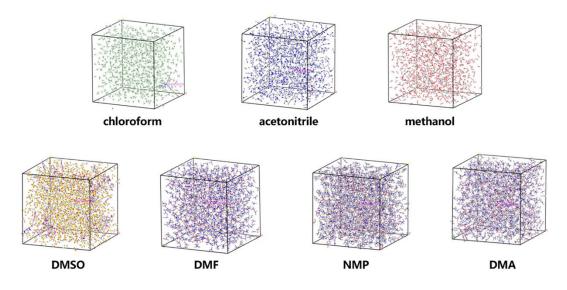



Figure S3 The final configurations of solvation free energy simulation

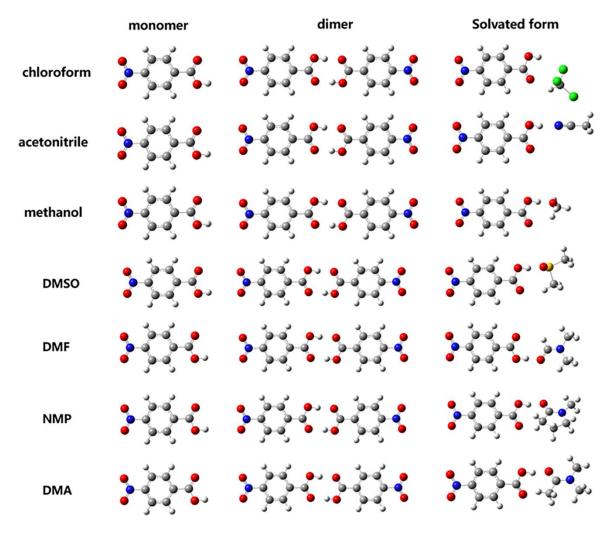



Figure S4 Optimized conformations for NMR calculation (using SMD implicit solvation model)

| Supersaturation S | Average induction<br>time / min | nucleation rates J /<br>m <sup>-3</sup> s <sup>-1</sup> | 1/ln <sup>2</sup> <i>S</i> | $\ln(J/S)$ |  |  |  |
|-------------------|---------------------------------|---------------------------------------------------------|----------------------------|------------|--|--|--|
| chloroform        |                                 |                                                         |                            |            |  |  |  |
| 1.029             | 22.51                           | 4.936                                                   | 1234                       | 1.568      |  |  |  |
| 1.040             | 13.23                           | 8.398                                                   | 654.6                      | 2.089      |  |  |  |
| 1.053             | 10.50                           | 10.58                                                   | 375.9                      | 2.308      |  |  |  |
| 1.075             | 8.33                            | 13.34                                                   | 189.1                      | 2.518      |  |  |  |
| 1.097             | 6.79                            | 16.36                                                   | 115.8                      | 2.702      |  |  |  |
| 1.125             | 5.52                            | 20.13                                                   | 71.96                      | 2.884      |  |  |  |
| acetonitrile      |                                 |                                                         |                            |            |  |  |  |
| 1.040             | 93.67                           | 1.186                                                   | 641.5                      | 0.1312     |  |  |  |
| 1.056             | 37.42                           | 2.969                                                   | 332.6                      | 1.034      |  |  |  |
| 1.086             | 16.65                           | 6.673                                                   | 145.9                      | 1.815      |  |  |  |
| 1.123             | 11.33                           | 9.807                                                   | 74.13                      | 2.167      |  |  |  |
| 1.161             | 7.520                           | 14.78                                                   | 45.08                      | 2.544      |  |  |  |
| 1.205             | 5.280                           | 21.04                                                   | 28.85                      | 2.860      |  |  |  |
| methanol          |                                 |                                                         |                            |            |  |  |  |
| 1.086             | 415.4                           | 0.2677                                                  | 146.2                      | -1.401     |  |  |  |
| 1.109             | 78.77                           | 1.411                                                   | 93.85                      | 0.2408     |  |  |  |
| 1.131             | 40.11                           | 2.778                                                   | 66.32                      | 0.8961     |  |  |  |
| 1.151             | 27.33                           | 4.065                                                   | 50.55                      | 1.262      |  |  |  |
| 1.183             | 18.67                           | 5.952                                                   | 35.60                      | 1.616      |  |  |  |
| 1.212             | 14.17                           | 7.843                                                   | 27.07                      | 1.868      |  |  |  |
| 1.234             | 9.330                           | 11.91                                                   | 22.58                      | 2.267      |  |  |  |
| DMSO              |                                 |                                                         |                            |            |  |  |  |
| 1.028             | 482.5                           | 0.2303                                                  | 1343                       | -1.496     |  |  |  |
| 1.035             | 154.6                           | 0.7186                                                  | 851.3                      | -0.3647    |  |  |  |
| 1.042             | 89.24                           | 1.245                                                   | 596.0                      | 0.1782     |  |  |  |
| 1.054             | 41.21                           | 2.696                                                   | 358.3                      | 0.9390     |  |  |  |
|                   |                                 |                                                         |                            |            |  |  |  |

Supporting information, sup-5

| 1.069 | 18.33  | 6.062  | 225.3 | 1.735   |  |  |  |
|-------|--------|--------|-------|---------|--|--|--|
| 1.078 | 12.67  | 8.770  | 176.9 | 2.096   |  |  |  |
| 1.102 | 8.100  | 13.72  | 106.8 | 2.522   |  |  |  |
| DMF   |        |        |       |         |  |  |  |
| 1.045 | 212.00 | 0.5241 | 508.6 | -0.6904 |  |  |  |
| 1.061 | 39.31  | 2.827  | 285.9 | 0.9799  |  |  |  |
| 1.077 | 20.79  | 5.345  | 181.8 | 1.602   |  |  |  |
| 1.091 | 14.55  | 7.637  | 132.1 | 1.946   |  |  |  |
| 1.104 | 10.62  | 10.46  | 101.4 | 2.249   |  |  |  |
| 1.118 | 7.120  | 15.61  | 80.30 | 2.636   |  |  |  |
| NMP   |        |        |       |         |  |  |  |
| 1.045 | 663.5  | 0.1675 | 527.3 | -1.831  |  |  |  |
| 1.057 | 94.87  | 1.171  | 324.3 | 0.1025  |  |  |  |
| 1.070 | 39.67  | 2.801  | 221.4 | 0.9627  |  |  |  |
| 1.099 | 13.64  | 8.146  | 112.8 | 2.003   |  |  |  |
| 1.112 | 9.030  | 12.30  | 88.17 | 2.404   |  |  |  |
| DMA   |        |        |       |         |  |  |  |
| 1.065 | 87.03  | 1.277  | 254.8 | 0.1816  |  |  |  |
| 1.073 | 49.68  | 2.237  | 199.8 | 0.7342  |  |  |  |
| 1.081 | 37.29  | 2.980  | 164.9 | 1.014   |  |  |  |
| 1.099 | 18.43  | 6.029  | 112.4 | 1.702   |  |  |  |
| 1.107 | 15.79  | 7.037  | 97.53 | 1.850   |  |  |  |

## References

Bunte, S. W. & Sun, H. (2000). J Phys Chem B, 104, 2477-2489.

Lu, T. & Chen, F. (2012a). Acta Phys.-Chim. Sin, 28, 1-18.

Lu, T. & Chen, F. (2012b). J. Comput. Chem, 33, 580-592.

Vyalov, I., Vaksler, Y., Koverga, V., Miannay, F. A., Kiselev, M. & Idrissi, A. (2017). *J Mol Liq*, **245**, 97-102.