

Volume 75 (2019)

Supporting information for article:

Comparison of different strategies for modelling hydrogen atoms in charge density analyses

Christian Köhler, Jens Lübben, Lennard Krause, Christina Hoffmann, Regine Herbst-Irmer and Dietmar Stalke

Table of Contents

- S1. Details about Application of Different H-atom Approaches 2
- S2. Additional Information for SPAnPS 6
- S3. Additional Information for SPAnH 26

S1. Details about Application of Different H-Atom Approaches

S1.1. Neutron Data

As the H-ADPs derived from neutron data was used as reference for all approximation methods, special care was taken in the refinement against the neutron data set. Errors in the neutron refinement can easily result in faulty figures of merit, which can lead to wrong conclusions for the quality of approximate H-ADPs. For SPAnPS, two neutron data sets were available. In one dataset, all reflections with a significance lower than 3σ were omitted, the other dataset was not modified. Refinement against the unmodified data resulted in numerous cigar-shaped H-ADPs. As this is not chemically sound, the model obtained from the modified dataset was used for generating the reference H-ADPs. Data quality indicators of all neutron datasets can be found in Tables S1-S3. A refinement of all atomic positions and ADPs against the available neutron data was performed. The obtained H-ADPs were scaled to be compatible with X-ray data using *APD-Toolkit*. H-APDs and hydrogen-carbon distances were kept fixed for the refinement.

Figure S1 Cigar-shaped hydrogen ADPs from the refinement against the unmodified neutron data. ADPs are displayed at 50 % probability level.

d [Å]	#Data	#hkl (theory)	%Comp	Redundancy	R _{r.i.m.}	R _{p.i.m.}
Inf - 2.19	194	228	85.1	2.48	0.0772	0.0429
2.19 - 1.50	454	461	98.5	4.79	0.0882	0.0380
1.50 - 1.19	656	680	96.5	4.93	0.0634	0.0265
1.19 - 1.03	676	734	92.1	4.50	0.0687	0.0284
1.03 - 0.93	641	727	88.2	3.92	0.0817	0.0357
0.93 - 0.86	602	743	81.0	3.34	0.0997	0.0442
0.86 - 0.80	678	836	81.1	3.36	0.1013	0.0445
0.80 - 0.75	733	936	78.3	3.16	0.1116	0.0509
0.75 - 0.72	534	683	78.2	3.09	0.1169	0.0526
0.72 - 0.68	796	1110	71.7	2.68	0.1244	0.0573
0.68 - 0.65	714	1030	69.3	2.38	0.1507	0.0706
0.65 - 0.63	527	791	66.6	2.28	0.1424	0.0675
0.63 - 0.61	566	889	63.7	2.03	0.1550	0.0745
0.61 - 0.59	626	1036	60.4	1.90	0.1627	0.0783
0.59 - 0.57	696	1153	60.4	1.83	0.1521	0.0730
0.57 - 0.55	714	1366	52.3	1.36	0.1725	0.0873
0.55 - 0.53	647	1566	41.3	1.02	0.1861	0.0950
0.53 - 0.51	617	1804	34.2	0.68	0.2039	0.1155
0.51 - 0.49	557	2122	26.2	0.49	0.2002	0.1139
0.49 - 0.46	681	3933	17.3	0.29	0.2059	0.1208
0.46 - 0.40	591	11760	5.0	0.07	0.1913	0.1144

Table S1 Data quality indicators including $R_{r.i.m}$ and $R_{p.i.m}$ (Weiss, 2001; Weiss & Hilgenfeld, 1997)given by *XPREP* (Sheldrick, 2014) for the unmodified neutron data of SPAnPS.

d [Å]	#Data	#hkl (theory)	%Comp	Redundancy	R _{r.i.m.}	R _{p.i.m.}
Inf - 2.01	174	228	58.4	1.63	0.0353	0.0178
2.01 - 1.45	414	461	86.8	3.95	0.0455	0.0194
1.45 - 1.18	565	680	89.0	4.22	0.0409	0.0177
1.18 - 1.03	600	734	86.6	4.13	0.0440	0.0190
1.03 - 0.93	599	727	82.4	3.64	0.0596	0.0265
0.93 - 0.86	558	743	75.1	3.14	0.0747	0.0333
0.86 - 0.80	631	836	75.5	3.18	0.0799	0.0354
0.80 - 0.76	539	936	73.6	3.05	0.0924	0.0420
0.76 - 0.72	647	683	72.9	2.94	0.0974	0.0446
0.72 - 0.69	534	1110	65.9	2.53	0.1059	0.0492
0.69 - 0.66	632	1030	65.6	2.35	0.1205	0.0578
0.66 - 0.64	455	791	61.5	2.20	0.1247	0.0588
0.64 - 0.61	763	889	58.4	2.00	0.1352	0.0647
0.61 - 0.59	567	1036	54.7	1.78	0.1432	0.0687
0.59 - 0.57	627	1153	54.4	1.73	0.1381	0.0671
0.57 - 0.55	609	1366	44.6	1.25	0.1546	0.0783
0.55 - 0.53	567	1566	36.2	0.94	0.1680	0.0871
0.53 - 0.51	515	1804	28.5	0.61	0.1883	0.1051
0.51 - 0.49	462	2122	21.8	0.44	0.1951	0.1103
0.49 - 0.46	586	3933	14.9	0.27	0.2023	0.1186
0.46 - 0.40	483	11760	4.1	0.06	0.1864	0.1110

Table S2Data quality indicators given by *XPREP* for the neutron data of SPAnPS after rejection ofreflections with a significance lower than 3 σ .

d [Å]	#Data	#hkl (theory)	%Comp	Redundancy	R _{r.i.m.}	R _{p.i.m.}
Inf - 2.04	401	486	82.5	2.62	0.0805	0.0411
2.04 - 1.42	925	960	96.4	4.46	0.0754	0.0329
1.42 - 1.13	1333	1403	95.0	4.35	0.0818	0.0350
1.13 - 0.99	1315	1426	92.2	4.03	0.1006	0.0431
0.99 - 0.89	1463	1601	91.4	3.66	0.1441	0.0642
0.89 - 0.83	1212	1359	89.2	3.46	0.1594	0.0710
0.83 - 0.78	1303	1476	88.3	3.35	0.1617	0.0740
0.78 - 0.74	1333	1498	89.0	3.27	0.1727	0.0791
0.74 - 0.70	1607	1863	86.3	3.04	0.1758	0.0813
0.70 - 0.67	1394	1685	82.7	2.65	0.1977	0.0954
0.67 - 0.65	1101	1307	84.2	2.64	0.2142	0.1033
0.65 - 0.63	1236	1493	82.8	2.54	0.2155	0.1044
0.63 - 0.61	1354	1678	80.7	2.39	0.2282	0.1113
0.61 - 0.59	1542	1905	80.9	2.34	0.2292	0.1125
0.59 - 0.57	1707	2205	77.4	2.09	0.2421	0.1223
0.57 - 0.56	898	1199	74.9	1.94	0.2496	0.1283
0.56 - 0.54	1985	2728	72.8	1.73	0.2738	0.1446
0.54 - 0.53	1050	1506	69.7	1.49	0.2835	0.1560
0.53 - 0.52	1090	1631	66.8	1.40	0.2932	0.1628
0.52 - 0.51	1103	1741	63.4	1.21	0.3000	0.1706
0.51 - 0.50	1108	1946	56.9	1.04	0.3337	0.1981

Table S3Data quality indicators given by *XPREP* for available the neutron data of SPAnH.

S1.2. SHADE 2.1

All necessary information for the *SHADE* procedure was obtained from a crystallographic information file (.cif) generated with *XDCIF* in the *XD2016* program suite (Volkov *et al.*, 2016) from the refinement against X-ray data. The parameter file from the final refinement step was update with H-ADPs assigned by the *SHADE2.1* server and then submitted to a refinement of the scale factors in a first step and refinement of all previously refined variables except κ' and H-ADPs, which were kept fixed on the obtained anisotropic *SHADE* values.

S1.3. APD-Toolkit

The XD parameter file of the final isotropic hydrogen refinement was loaded into *APD-Toolkit*. An automated segmented rigid body TLS was performed. All H-ADPs written in the output XD parameter file were copied into the first input parameter file of the isotropic refinement strategy. The refinement progress was repeated with the new parameter file. All H-ADPs were kept fixed on the obtained anisotropic *APD-Toolkit* values.

S1.4. Free Anisotropic Refinement

A last final step was added to the refinement, in which all constraints for isotropic H-atoms were released. All hydrogen displacement parameters were refined in addition to all previously refined parameters.

S2. Additional Information for SPAnPS

S2.1. Data Collection

The high-resolution data for SPAnPS, was collected in 2007 at T = 100 K on a Bruker D8 three-circle goniometer equipped with a Smart APEX II CCD, a TXS Mo rotating anode, Incoatec Helios mirror optics and a Bruker Kryoflex II device. Data was collected in 21 runs. In runs 1-13, low order data up to d = 0.7 Å were collected. In runs 14-21, high order data up to d = 0.44 Å was collected. During the evaluation of the collected data, areas with to high recorded intensities were found on several frames. Masking the contaminated areas was attempted, but lead to worsening of data quality indicators. For the final data integration, all contaminated frames were omitted (Figures S2, S3).

Figure S2 : Left: Uncontaminated frame ($\omega = 285^{\circ}$) from run 14. Right: Contaminated frame from the same run ($\omega = 265.5^{\circ}$). The overexposed area in the top right part of the frame is clearly visible. Observations were similar for runs 14, 15, 18, 19, 20, 21. Contaminated frames were omitted for the final integration.

Figure S3 Effects of stepwise removal of problematic frames on the R_{int} plot generated by *SADABS* (Krause *et al.*, 2015). Top: All frames are integrated. Middle: The first 109 frames of runs 14, 18 and 21 were omitted from integration (265.3° $\leq \omega \leq$ 285.0). Bottom: Additionally, the first 109 frames of runs 15, 19 and 20 were removed. Twenty additional frames were removed from run 21 (up to $\omega \leq$ 246.3°).

Figure S4 Course of $R_{r.i.m.}$ and $R_{p.i.m.}$ with resolution for SPAnPS.

Table S4 Data quality indicators given by *XPREP*. For the final integration, a resolution cut-off at d = 0.45 was performed due to a strong increase of both $R_{r.i.m.}$ and $R_{p.i.m.}$ and a strong decrease of the completeness at higher resolution.

d [Å]	#Data	#hkl (theory)	%Comp	Redundancy	$R_{r.i.m.}$	$R_{p.i.m.}$
Inf - 1.83	392	392	100	21.15	0.0126	0.0027
1.83 - 1.21	914	914	100	21.75	0.0211	0.0045
1.21 - 0.95	1358	1358	100	18.21	0.0407	0.0095
0.95 - 0.83	1294	1294	100	18.53	0.0551	0.0128
0.83 - 0.75	1406	1406	100	19.82	0.0671	0.015
0.75 - 0.7	1216	1216	100	18.2	0.087	0.0202
0.7 - 0.66	1252	1252	100	6.02	0.0358	0.0145
0.66 - 0.62	1597	1597	100	5.8	0.0423	0.0174
0.62 - 0.6	959	959	100	5.61	0.0524	0.022
0.6 - 0.57	1699	1699	100	5.39	0.0605	0.0258
0.57 - 0.55	1366	1366	100	5.12	0.0748	0.0324
0.55 - 0.53	1574	1574	100	4.99	0.097	0.0428
0.53 - 0.52	865	865	100	4.77	0.1171	0.0528
0.52 - 0.5	1955	1955	100	4.62	0.1402	0.0642
0.5 - 0.49	1114	1114	100	4.49	0.1656	0.0773
0.49 - 0.48	1193	1193	100	4.29	0.1903	0.0907
0.48 - 0.47	1309	1309	100	4.14	0.1981	0.0962
0.47 - 0.46	1439	1439	100	3.98	0.2082	0.1024
0.46 - 0.45	1517	1517	100	3.8	0.2167	0.1081
0.45 - 0.44	1559	1696	91.92	2.8	0.2426	0.1306

DRK-Plots

S2.1.1. One Scale Factor

Figure S5 Plot of $\Sigma F_o^2 / \Sigma F_c^2$ against the resolution for the initial refinement of SPAnPS. A deviation from unity larger than 5 % is indicative of errors in the data (Adam Stash, 2007).

Figure S6 Normal probability plot for the refinement with one scale factor (Adam Stash, 2007).

S2.1.2. 10 Scale Factors

The shape of the plot shown in Figure S5 shows resolution dependent errors, but has not the characteristic shape of caused by thermal diffuse scattering (TDS) (Willis, 2001). Therefore, the final refinement was conducted with 10 resolution-dependent scale factors.

Figure S7 Plot of $\Sigma F_o^2 / \Sigma F_c^2$ against resolution for refinement with ten resolution-dependent scale factors after application of H-ADPs derived from neutron data. Even for high-order reflections, a value of 1.05 is not exceeded anymore.

Figure S8 Normal probability plot for the refinement with 10 scale factors.

S2.2. Local Coordinate Systems

ATOM	ATOM0	AX1	ATOM1	ATOM2	AX2	R/L	TP	TBL	KAP	LMX	SITESYM	CHEMCON
S1	P1	Z	S1	C2	Y	R	4	1	1	4	_6	
P1	S1	Z	P1	C14	Y	R	4	2	2	4	_6	
C1	C2	Х	C1	C3	Y	R	2	3	3	4	_mz	
C2	P1	Z	C2	C3	Х	R	2	3	4	4	_mm2	
C3	C2	Х	C3	C4	Y	R	2	3	3	4	_mz	C1
C4	C3	Х	C4	C5	Y	R	2	3	5	4	_mz	
C5	C4	X	C5	C6	Y	R	3	3	6	4	_mz	
C6	C5	Х	C6	C7	Y	R	3	3	6	4	_mz	C5
C7	C6	Х	C7	C5	Y	R	2	3	5	4	_mm2	C4
C8	P1	Z	C8	C13	Y	R	2	3	7	4	_mz	
C9	C8	Х	C9	C10	Y	R	3	3	8	4	_mz	
C10	DUM0	Z	C10	C11	Х	R	3	3	9	4	_mm2	
C11	DUM1	Z	C11	C12	Х	R	3	3	9	4	_mm2	C10
C12	DUM2	Z	C12	C13	Х	R	3	3	9	4	_mm2	C10
C13	C8	Х	C13	C12	Y	R	2	3	8	4	_mz	C9
C14	P1	Z	C14	C19	Y	R	2	3	7	4	_mm2	C8
C15	C14	Х	C15	C16	Y	R	2	3	8	4	_mz	С9
C16	DUM3	Z	C16	C17	Х	R	3	3	9	4	_mm2	C10
C17	DUM4	Z	C17	C18	Х	R	3	3	9	4	_mm2	C10
C18	DUM5	Z	C18	C19	Х	R	3	3	9	4	_mm2	C10
C19	C14	Х	C19	C18	Y	R	2	3	8	4	_mz	С9
C20	C21	Z	C20	H20C	Х	R	3	4	10	4	_3my	
C21	C20	X	C21	C26	Y	R	3	3	11	4	_mz	
C22	C21	X	C22	C23	Y	R	3	3	12	4	_mz	

~~~			~~~	~ • •		-	2				-	
C23	DUM6	Z	C23	C24	X	R	3	3	13	4	_mm2	
C24	DUM7	Z	C24	C25	X	R	3	3	13	4	_mm2	C23
C25	DUM8	Z	C25	C26	Х	R	3	3	13	4	_mm2	C23
C26	C21	Х	C26	C25	Y	R	3	3	12	4	_mz	C22
H4	C4	Z	H4	C3	Y	R	2	5	14	2	_6	
H5	C5	Z	H5	C4	Y	R	2	5	14	2	_6	H4
H6	C6	Z	H6	C5	Y	R	2	5	14	2	_6	H4
H7	C7	Z	H7	C6	Y	R	2	5	14	2	_6	H4
H9	C9	Z	H9	C8	Y	R	2	5	14	2	_6	H4
H10	C10	Z	H10	C9	Y	R	2	5	14	2	_6	H4
H11	C11	Z	H11	C10	Y	R	2	5	14	2	_6	H4
H12	C12	Z	H12	C11	Y	R	2	5	14	2	_6	H4
H13	C13	Z	H13	C8	Y	R	2	5	14	2	_6	H4
H15	C15	Z	H15	C14	Y	R	2	5	14	2	_6	H4
H16	C16	Z	H16	C15	Y	R	2	5	14	2	_6	H4
H17	C17	Z	H17	C16	Y	R	2	5	14	2	_6	H4
H18	C18	Z	H18	C17	Y	R	2	5	14	2	_6	H4
H19	C19	Z	H19	C14	Y	R	2	5	14	2	_6	H4
H20A	C20	Z	H20A	H20B	Y	R	2	5	15	2	_6	
H20B	C20	Z	H20B	H20A	Y	R	2	5	15	2	_6	H20A
H20C	C20	Z	H20C	H20A	Y	R	2	5	15	2	_6	H20A
H22	C22	Z	H22	C21	Y	R	2	5	14	2	_6	H4
H23	C23	Z	H23	C22	Y	R	2	5	14	2	_6	H4
H24	C24	Z	H24	C23	Y	R	2	5	14	2	_6	H4
H25	C25	Z	H25	C24	Y	R	2	5	14	2	_6	H4
H26	C26	Z	H26	C21	Y	R	2	5	14	2	_6	H4

**Table S5** Final refinement strategy for SPAnPS with isotropic hydrogen atoms. Starting values for multipole and  $\kappa$ - parameters were obtained from the *INVARIOM* database (Dittrich *et al.*, 2013) using the software *InvariomTool* (Luger *et al.*, 2007). The ten scale factors are refined in each step. Red denotes newly added parameters. Green denotes the final refinement step with fixed C-H bond distances. At the beginning of the refinement, only reflections with a significance of at least  $3\sigma$  are taken into account ("sigobs 3"). This limitation is released in step 10. A test for overfitting was performed using a  $R_{cross}$  as validation tool.(Krause *et al.*, 2017b). Abbreviations: M: monopoles; D: dipoles; Q: quadrupoles; O: octupoles; H: hexadecapoles, U: Uij, k: kappa, U3/4 (atom name): Gram Charlier  $3^{rd}/4^{th}$  order, nosym: no local symmetry constraints, nocon: no chemical constraints, d/p: data to parameter ratio,  $d_1/p_m$ : ratio of low resolution data ( up to 1 Å) to multipole parameter.

# Table S6

Step	Parameters	#param	#data	d/p	$d_1/p_m$	$\sigma$ cut-off	$R(F^2)$
1	SCALE	10	16587	1658.7	None	3	0.0342
2	U	178	16587	93.19	None	3	0.0327
3	Uxyz	262	16587	63.31	None	3	0.0282
4	MDQOHUxyz	414	16587	40.07	25.06	3	0.022
5	MDQOHUxyz <b>k</b>	427	16587	38.85	21.63	3	0.0211
6	xyz(H)	76	2146	28.24	None	3	0.0205
7	MDQOHUxyzĸ	427	16587	38.85	21.63	3	0.0205
8	κ'	23	16587	721.17	None	3	0.0204
9	MDQOHUxyzĸ	427	16587	38.85	21.63	3	0.0202
10	Sigobs 0	427	22130	51.83	22.59	0	0.0202
11	MDQOHUxyzк U3 (S1, P1, C9-12, C20-21, C24-26)	537	22130	41.21	22.59	0	0.0179
12	MDQOHUxyzк U3 (С5-6, С22-23, С16-18)	607	22130	36.46	22.59	0	0.0173
13	MDQOHUxyzк U3 , U4 (S1, P1)	622	22130	35.58	22.59	0	0.0172

14	κ'	23	22130	962.17	None	0	0.0171
15	MDQOHUxyzκ, U3, U4	637	22130	34.74	22.59	0	0.0169
16	H-Uij unconstrained	769	22130	28.78	22.59	0	0.0148
17	Nocon Anthracene	814	22130	27.19	18.5	0	0.0147
18	H(xyz) without RESET	880	22130	25.15	18.5	0	0.0142

# **Release of Constraints**

Step	Parameters	#param	#data	d/p	$d_1/p_m$	$\sigma$ cut-off	$R(F^2)$
1-18	As before						
19	Nosymm P	111	2146	24.7	17.31	0	0.0142
20	Nosymm S	121	2146	24.16	16.01	0	0.0141
21	Nosymm	215	2146	20.17	9.41	0	0.0135
22	Nocon	439	2146	14.32	4.75	0	0.0122



**Figure S9** Cross-validation output plot for steps included in the final refinement of SPAnPS. The generally joined improvement of both  $R_{work}$  and  $R_{cross}$  indicates that all introduced parameters are meaningful.



**Figure S10** Cross-validation output plot for steps excluded from the final refinement of SPAnPS. All steps include a worsening of the  $R_{cross}$  while  $R_{work}$  stays constant or improves. This is a sign of overfitting.

### S2.4. Residuals After Final Refinement Step against X-ray Data with Fixed C-H Distances

# S2.4.1. Neutron ADPs with Neutron Distances

R(F)	=	0.0258	$R_{\rm all}(F)$	=	0.0258	$R_w(F)$	=	0.0095
$R(F^2)$	=	0.0155	$R_{\rm all}(F^2)$	=	0.0155	$R_w(F^2)$	=	0.0184
GOFw	=	1.2871	GOF	=	1.2871	$N_{ m ref}/N_{ m v}$	=	32.4487
S2.4.2. SH	ADE							
R(F)	=	<mark>0.0266</mark>	$R_{\rm all}(F)$	=	<mark>0.0266</mark>	$R_w(F)$	=	<mark>0.0101</mark>
$R(F^2)$	=	<mark>0.0169</mark>	$R_{\rm all}(F^2)$	=	<mark>0.0169</mark>	$R_w(F^2)$	=	<mark>0.0198</mark>
GOFw	=	<mark>1.3865</mark>	GOF	=	<mark>1.3865</mark>	$N_{ m ref}/N_{ m v}$	=	32.4487
S2.4.3. AP	D-To	oolkit						
R(F)	=	0.0261	$R_{\rm all}(F)$	=	0.0261	$R_w(F)$	=	0.0097
$R(F^2)$	=	0.0161	$R_{\rm all}(F^2)$	=	0.0161	$R_w(F^2)$	=	0.0189
GOFw	=	1.3212	GOF	=	1.3212	$N_{ m ref}/N_{ m v}$	=	32.4487
S2.4.4. An	iso v	vithout H-Q0						
R(F)	=	0.0254	$R_{\rm all}(F)$	=	0.0254	$R_w(F)$	=	0.0090
$R(F^2)$	=	0.0147	$R_{\rm all}(F^2)$	=	0.0147	$R_w(F^2)$	=	0.0174
GOFw	=	1.2231	GOF	=	1.2231	$N_{ m ref}/N_{ m v}$	=	27.2537
S2.4.5. An	iso v	vith H-Q0						
R(F)	=	0.0254	$R_{\rm all}(F)$	=	0.0254	$R_w(F)$	=	0.0090

$R(F^2)$	=	0.0146	$R_{\rm all}(F^2)$	=	0.0146	$R_w(F^2)$	=	0.0174
GOFw	=	1.2229	GOF	=	1.2229	$N_{ m ref}/N_{ m v}$	=	27.1867

#### S2.5. Refinement of Anharmonic Motion



**Figure S11**(a): Residual density map of the asymmetric unit of SPAnPS before introduction of Gram-Charlier parameters (Johnson & Levy, 1974) in step 11. H-Atoms are omitted for visual clarity. Isolevel for residual density:  $\pm 0.093 \text{Å}^{-3}$ . ADPs are depicted at 50 % probability level. (b): Close-up on the shashlik-shaped residual density around S1 and P1. (c): Henn-Meindl plot of the residual density (Meindl & Henn, 2008). The broadening of the parabola is indicative for an excess of both positive and negative residual density.



**Figure S12** (a): Residual density map of the asymmetric unit of SPAnPS after introduction of Gram-Charlier parameters. H-Atoms are omitted for visual clarity. Isolevel for residual density:  $\pm 0.084 \text{Å}^{-3}$ . (b): Close-up on greatly reduced residual density around S1 and P1. ADPs are depicted at 50 % probability level. (c): Improved Henn-Meindl plot of the residual density after introduction of Gram-Charlier coefficients.

	R [%]	e _{gross} [e]	$d^f(0)$	highest peak [e · Å ^{−3} ]	deepest hole [e · Å ⁻³ ]
harmonic	2.06	28.7	2.77	0.35	0.32
anharmonic	1.73	26.8	2.77	0.23	0.22

**Table S7** Selected model quality indicators before and after the refinement of Gram-Charlier coefficients of 3rd and 4th order (Johnson & Levy, 1974).

# S2.5.1. Closer Inspection of Probability Density Functions

**Table S8** Data regarding the significance of the probability density functions (pdfs) for atomic displacement resulting from refined Gram-Charlier coefficient and negative regions of the resulting atomic displacements pdfs. 4th order coefficients were only refined for S1 and P1, all other refined GCCs are of 3rd order.

	Significance of most sign. GCC [GCC/esd]	Minimum of pdf	Integrated negative probability [%]
P1	7.00	-4.08	-0.001
4th order	13.00		
S1	12.50	-0.26	0
4th order	12.50		
C5	5.42	-1.23	-0.001
C6	6.21	-2.58	-0.002
C9	11.28	-4.97	-0.003
C10	11.33	-8.13	-0.008
C11	15.818	-27.05	-0.029
C12	9.94	-5.06	-0.004
C16	11.70	-1.06	-0.002
C17	10.11	-14.63	-0.02
C18	8.91	-3.54	-0.002
C20	24.36	-72.97	-0.152
C21	6.89	-6.24	-0.005
C22	9.59	-2.73	-0.004
C23	10.22	-2.05	-0.002
C24	23.95	-19.47	-0.028
C25	18.33	-40.21	-0.091
C26	13.66	-16.25	-0.03

### S2.5.2. Kuhs' Rule

For the refinement of SPAnPS, Gram-Charlier parameters in violation of Kuhs' rule (Kuhs, 1992) had to be introduced in order to successfully model the residual density around these heavier atoms. For all introduced Gram-Charlier coefficients, various quality indicators were examined (see Table S4) (Herbst-Irmer *et al.*, 2013). In the case of P1, the highest Gram-Charlier coefficients of 4th order refines to high significance of 13 $\sigma$  and can therefore be expected to be reasonable. As reported by Herbst-Irmer *et al.* (*Herbst-Irmer et al.*, 2013), Kuhs' rule may be too strict for heavier atoms such as sulphur or phosphorous.

**Table S9** Maximum required resolution for refinement of meaningful Gram-Charlier coefficients (GCCs) according to Kuhs' rule taken from output files of *XDPDF* in the *XD2016* program suite (Volkov *et al.*, 2016). The relevant limits for the refined parameters are highlighted. The requirements are fulfilled for all atoms except P1. All resolutions given in  $\sin(\theta/\lambda)$ .

	Min. res. req	uired for GCC of nth order	Maximum order of refined
	(Kuhs'rule)		GCCs (maximum resolution of
	n=3	n=4	experiment: 1.136)
<u>S1</u>	0.81	0.94	4th
P1	1.06	1.22	4th
C5	0.95	1.09	3rd
C6	0.94	1.08	3rd
C7	0.99	1.14	3rd
C9	0.88	1.01	3rd
C10	0.8	0.92	3rd
C11	0.82	0.95	3rd
C12	0.88	1.01	3rd
C16	0.78	0.9	3rd
C17	0.81	0.94	3rd
C18	0.89	1.02	3rd
C20	0.66	0.76	3rd
C21	0.78	0.9	3rd
C22	0.71	0.82	3rd
C23	0.63	0.73	3rd

C24	0.6	0.7	3rd	
C25	0.6	0.69	3rd	
C26	0.66	0.77	3rd	

**Table S10** Similarity indices calculated with APD-Toolkit (given in percent) for individual atoms ofSPAnPS (Whitten & Spackman, 2006). Highlighted H-atoms are bonded to carbon atoms withoutrefined anharmonic motion. Mean values excluding the C(sp3)-bonded H-Atoms H20A, H20B andH20C are denoted in brackets.

	SHADE	APD	noquadru	quadru	HARt
H4	1.277996	<mark>1.32334</mark>	0.156175	0.255681	2.340025
H5	0.295186	<mark>0.432937</mark>	0.701225	0.159472	3.242928
H6	<mark>0.39279</mark>	<mark>0.434172</mark>	<mark>2.245104</mark>	<mark>9.218902</mark>	2.153913
H7	1.793094	<mark>1.883624</mark>	<mark>4.475757</mark>	<mark>6.184401</mark>	<mark>1.462236</mark>
H9	<mark>0.474916</mark>	0.502787	2.048449	<mark>3.686319</mark>	1.975668
H10	<mark>0.603963</mark>	<mark>0.677014</mark>	3.284645	1.034371	2.208422
H11	<mark>0.592998</mark>	<mark>0.667175</mark>	3.128941	1.93668	1.355325
H12	<mark>0.875104</mark>	<mark>0.982627</mark>	1.124677	1.579796	<mark>1.299161</mark>
H13	<mark>0.747814</mark>	<mark>0.787244</mark>	1.332004	<mark>1.171786</mark>	1.354475
H15	0.821395	<mark>0.761641</mark>	<mark>3.919144</mark>	<mark>3.189214</mark>	1.224932
H16	1.671122	1.786693	7.171311	<mark>17.363715</mark>	1.522358
H17	0.234541	<mark>0.288759</mark>	1.375807	<mark>4.371084</mark>	1.196601
H18	0.324927	<mark>0.426291</mark>	2.375504	5.030602	<mark>0.813286</mark>
H19	<mark>0.667183</mark>	<mark>0.76633</mark>	<mark>1.956254</mark>	<mark>1.628834</mark>	<mark>2.34336</mark>
H20A*	<mark>5.013252</mark>	<mark>5.480959</mark>	<mark>16.350949</mark>	18.00752	1.264353
H20B*	<mark>4.42349</mark>	<mark>4.372896</mark>	<mark>8.493924</mark>	<mark>13.090989</mark>	<mark>5.482734</mark>
H20C*	<mark>1.415201</mark>	<mark>1.495886</mark>	<mark>6.435485</mark>	<mark>6.31627</mark>	<mark>1.983661</mark>
H22	0.910069	1.045332	0.198398	7.553271	1.620906
H23	8.463898	<mark>8.676744</mark>	0.409556	8.640706	1.237257
H24	1.471806	1.368654	0.051146	8.914029	2.340025

H25	2.247687	2.282575	<mark>0.260131</mark>	13.878027	3.242928
H26	<mark>0.687198</mark>	<mark>0.758794</mark>	<mark>0.096086</mark>	5.125898	<mark>2.153913</mark>
$\langle S_{NX} \rangle$	5.311726 (6.288071)	1.911069 (3.072303)	1.360670 (1.691022)	1.292299 (1.609347)	1.899032 (3.446750)
$\langle S_{NX} \rangle$ No anharm	<mark>2.4859832</mark>	2.3678668	1.1044358	1.0614964	1.7450056

**Table S11** Figures of Merit of SPAnPS with inclusion of the three H-atoms bonded with the sp3-hybridized C-atom of the guest toluene molecule.

Method	(DMSDA)	$S_{NX}$	$\langle U_X^{ii}/U_N^{ii}\rangle$	$\langle \left  \Delta U_{X-N}^{ii} \right  \rangle$	$\langle \left  \Delta U_{X-N}^{ij} \right  \rangle$	wRMSD
Neutron	96	-	-	-	-	-
SHADE	44	4.20	0.81(13)	0.019(10)	0.0093(7)	-
APD-Toolkit	63	3.05	0.86(13)	0.013(10)	0.0071(7)	-
Aniso without H- Q0	154	1.68	0.94(7)	0.000(4)	0.000(3)	13.69
Aniso with H-Q0	158	1.60	0.96(7)	0.004(4)	0.002(3)	16.24
HARt*	206	3.46	1.19(11)	0.011(6)	0.007(5)	3.44

# S2.6. Fingerprint Plot of Intermolecular Close Contacts in SPAnPS



Figure S13 Fingerprint plot of SPAnPS generated with CrystalExplorer 17.5 (Turner et al., 2018).

### S2.7. Calculated Intermolecular Interaction Energies

For "Neutron Data (tab. distances)", calculations were performed based on a refinement with ADPs from neutron results and C-H bond distances fixed to values provided by the *INVARIOM* database (1.08225 Å).

**Table S12** Top: Interaction energies between H12 / H13 and the toluene molecule located over the anthracene moiety. Bottom: Properties at the intermolecular BCP between H8 - C30 as well as interaction energies between H22 an the anthracene moiety. All energies given in kJ/mol.

	H12 to	luene			H13 …toluene			
	$E_{\rm ES}$	$E_{\rm ex-rep}$	$E_{\rm disp}$	$E_{\rm tot}$	$E_{\rm ES}$	$E_{\rm ex-rep}$	$E_{\rm disp}$	$E_{\rm tot}$
Neutron Data	-3.3	0.9	-1.6	-2.4	-4.6	10.0	-3.7	1.7
Neutron Data (tab. distances)	-3.6	0.9	-1.6	-2.6	-5.5	6.2	-3.7	0.7
SHADE	-2.0	2.5	-1.6	-1.1	-2.9	9.8	-3.7	3.2
APD	-2.7	2.5	-1.6	-1.8	-3.7	9.9	-3.7	2.4
Aniso-H	-3.5	2.5	-1.6	-2.6	-5.5	9.8	-3.7	0.6
Aniso-H (no Q0)	-3.4	2.5	-1.6	-2.5	-5.3	9.8	-3.7	0.8

	H22 …anthra	H22 …anthracene									
	$E_{\rm ES}$	$E_{\rm ex-rep}$	$E_{\rm disp}$	$E_{\rm tot}$							
Neutron Data	-7.2	11.3	-4.8	-0.8							
Neutron Data (tab. distances)	-7.0	11.3	-4.8	-0.5							
SHADE	-4.8	11.3	-4.8	1.7							
APD	-5.4	11.2	-4.8	0.9							
Aniso	-6.4	11.2	-4.8	0.0							
Aniso-H (no Q0)	-6.1	11.2	-4.8	0.4							

## S2.8. List of Evaluated BCPs between the Toluene Molecule and the Anthracene Moiety

The observed electron densities at the investigated intermolecular BCPs are rather small. The standard uncertainties of the BCPs and Laplacian are of the same order of magnitude as the values their selves and should therefore be treated carefully regarding their validity.

**Table S13** Properties at the BCP between X4_H22 and X3_C3 of SPAnPS. X4_H22 is generated from the asymmetric unit by applying the symmetry operation 1/2 + X, 1/2 - Y, 1/2 + Z to the toluene molecule. X3_C3 is generated from the asymmetric unit by applying the symmetry operation - X+1, - Y+1, - Z+2 to the half of the SPAnPS-molecule present in it.

	ρ	$\nabla^2 \rho(\mathbf{r})$	R _{ij}	dl	d2	Hessian	Eigenval	ues	3
Neut	0.05	0.39	2.8679	1.1199	1.748	-0.14	-0.08	0.62	0.76
Neutron Data (tab. distances)	0.05	0.393	2.8679	1.1199	1.748	-0.14	-0.08	0.62	0.76
SHADE_H	0.04	0.44	2.8562	1.0911	1.7651	-0.11	-0.06	0.61	0.95
APD-H	0.05	0.43	2.8635	1.1038	1.7597	-0.12	-0.06	0.62	0.89
Aniso-H	0.05	0.41	2.8642	1.1148	1.7493	-0.14	-0.07	0.62	0.85
Aniso-H (no Q0)	0.05	0.42	2.863	1.1095	1.7535	-0.13	-0.07	0.62	0.88

**Table S14** Properties at the BCP between H12 and X4_C24 of SPAnPS. X4_C24 is generated from the asymmetric unit by applying the symmetry operation 1/2 + X, 1/2 - Y, 1/2 + Z to the toluene molecule.

	ρ	$\nabla^2  ho(\mathbf{r})$	$R_{ij}$	d1	d2	Hessian	Eigenvalı	ies	З
Neutron Data	0.02	0.23	3.1793	1.2765	1.9028	-0.05	-0.03	0.31	1.04
Neutron Data (tab. distances)	0.02	0.23	3.1793	1.2765	1.9028	-0.05	-0.03	0.31	1.04
SHADE_H	0.02	0.26	3.2171	1.2914	1.9257	-0.05	-0.01	0.32	2.65
APD-H	0.02	0.26	3.242	1.2854	1.9566	-0.05	-0.01	0.33	2.91
Aniso-H	0.02	0.25	3.1861	1.2758	1.9103	-0.05	-0.02	0.32	1.32
Aniso-H (no Q0)	0.02	0.25	3.197	1.2763	1.9207	-0.05	-0.02	0.33	1.56

**Table S15** Properties at the BCP between H13 and X4_C22 of SPAnPS. X4_C22 is generated from the asymmetric unit by applying the symmetry operation 1/2 + X, 1/2 - Y, 1/2 + Z to the toluene molecule.

	ρ	$\nabla^2  ho(\boldsymbol{r})$	R _{ij}	d1	d2	Hessian	ı Eigenval	ues	З
Neutron Data	0.05	0.43	2.805	1.1052	1.6998	-0.15	-0.07	0.65	1.13
Neutron Data (tab. distances)	0.05	0.43	2.805	1.1052	1.6998	-0.15	-0.07	0.65	1.13
SHADE_H	0.05	0.51	2.8429	1.1016	1.7414	-0.11	-0.02	0.64	4.01
APD-H	0.05	0.48	2.8312	1.0902	1.741	-0.14	-0.05	0.67	1.52
Aniso-H	0.05	0.46	2.8186	1.1117	1.7069	-0.14	-0.05	0.66	1.6
Aniso-H (no Q0)	0.05	0.48	2.8275	1.1075	1.72	-0.14	-0.05	0.66	1.8

#### S3. Additional Information for SPAnH

Further details about this structure can be found in the publication by Herbst-Irmer *et al.* (Herbst-Irmer *et al.*, 2013) mentioned in the main article. Only specific differences to the approach of the authors will be mentioned here in detail.

### S3.1. Refinement Strategy

**Table S16** Final refinement strategy for SPAnH with isotropic hydrogen atoms. Starting values for multipole and  $\kappa$ - parameters were obtained from the *INVARIOM* database (Dittrich *et al.*, 2013) using the software *InvariomTool*. The scale factor is refined in every step. Red denotes newly added parameters. Green denotes the final refinement step with fixed C-H bond distances At the beginning of the refinement, only reflections with a significance of at least  $3\sigma$  are taken into account ("sigobs 3"). This limitation is released in step 8. A test for overfitting was performed using a  $R_{cross}$  as validation tool.(Krause *et al.*, 2017b). Abbreviations: M: monopoles; D: dipoles; Q: quadrupoles; O: octupoles; H: hexadecapoles, U: Uij, k: kappa, U3/4 (atom name): Gram Charlier  $3^{rd}/4^{th}$  order, nosym: no local symmetry constraints, nocon: no chemical constraints, d/p: data to parameter ratio,  $d_1/p_m$ : ratio of low resolution data ( up to 1 Å) to multipole parameter.

Step	Parameters	#param	#data	d/p	$d_1/p_m$	$\sigma$ cut- off	$R(F^2)$
1	SCALE	1	37280	37280	None	3	0.0267
2	U	505	37280	73.82	None	3	0.0236
3	MDQOHUxyzĸ	641	37280	58.16	50.96	3	0.0202
4	xyz(H)	115	4025	35	None	3	0.0191
5	MDQOHUxyzĸ	641	37280	58.16	50.96	3	0.0191
6	κ'	12	37280	3106.67	None	3	0.0189
7	MDQOHUxyzκ	641	37280	58.16	50.96	3	0.0189
8	Sigobs 0	641	41640	64.96	52.16	0	0.0189
9	MDQOHUxyzĸ					0	
	U3 (S2, P2)	721	41640	57.75	52.16		0.0166
10	MDQOHUxyzĸ					0	
10	U3, U4 (S2)	736	41640	56.58	52.16		0.0165
11	MDQOHUxyzĸ					0	
	<mark>U3 (C5)</mark> , U4	746	41640	55.82	52.16		0.0164
12	MDQOHUxyzĸ					0	
12	U3 (C43-46), U4	786	41640	52.98	52.16		0.0163
13	MDQOHUxyzĸ					0	
10	U3 (C24), U4	796	41640	52.31	52.16		0.0162
14	U3 (C12), U4	806	41640	51.66	52.16	0	0.0162
15	<i>U_{ij}</i> , XYZ, M, D, Q,					0	
-	Ο, Η, κ, U3 (S2), U4	816	41640	51.03	52.16		0.0161
16	Uij unconstrained	1044	41640	39.89	52.16	0	0.0149
17	H(xyz) without RESET	1158	41640	35.96	52.16	0	0.0149

# **S3.2. Release of Constraints**

Step	Parameters	#param	#data	d/p	$d_1/p_m$	$\sigma$ cutoff	Res. [Å-1]	<i>R</i> ( <i>F</i> ² )
1-17	As before							
18	Nocon Anthracene	1476	41640	28.21	17.84	0	1.10	0.0146
19	Nosymm P	1476	41640	28.21	17.84	0	1.10	0.0146
20	Nosymm S	1514	41640	27.5	16.48	0	1.10	0.0145
21	Nosymm	1882	41640	22.13	9.1	0	1.10	0.0141
22	Nocon	3382	41640	12.31	3.45	0	1.10	0.0131



**Figure S14** Cross-validation output plot for steps included in the final refinement of SPAnH. The generally joined improvement of both  $R_{\text{work}}$  and  $R_{\text{cross}}$  indicates that all introduced parameters are meaningful.



**Figure S15** Cross-validation output plot for steps excluded from the final refinement of SPAnH. All steps include a worsening of the  $R_{\text{cross}}$  while  $R_{\text{work}}$  stays constant or improves. This is a sign of overfitting.

# S3.3. Residuals after Final Step with Anisotropic H and Fixed C-H Distances

# Neutron ADPs with Neutron Distances

R(F)	=	0.0139	$R_{\rm all}(F)$	=	0.0155	$R_w(F)$	=	0.0113
$R(F^2)$	=	0.0148	$R_{\rm all}(F^2)$	=	0.0152	$R_w(F^2)$	=	0.0217
GOFw	=	1.5616	GOF	=	1.5616	$N_{ m ref}/N_{ m v}$	=	51.0294
SHADE								
R(F)	=	0.0141	$R_{\rm all}(F)$	=	0.0157	$R_w(F)$	=	0.0115
$R(F^2)$	=	0.0151	$R_{\rm all}(F^2)$	=	0.0155	$R_w(F^2)$	=	0.0222
GOFw	=	1.5918	GOF	=	1.5918	$N_{ m ref}/N_{ m v}$	=	51.0294
APD-Too	lkit							
R(F)	=	0.0140	$R_{\rm all}(F)$	=	0.0156	$R_w(F)$	=	0.0114
$R(F^2)$	=	0.0149	$R_{\rm all}(F^2)$	=	0.0153	$R_w(F^2)$	=	0.0218
GOFw	=	1.5673	GOF	=	1.5673	$N_{ m ref}/N_{ m v}$	=	51.0294
Aniso wit	hout	H-Q0						
R(F)	=	0.0140	$R_{\rm all}(F)$	=	0.0156	$R_w(F)$	=	0.0114
$R(F^2)$	=	0.0151	$R_{\rm all}(F^2)$	=	0.0155	$R_w(F^2)$	=	0.0219
GOFw	=	1.5747	GOF	=	1.5747	$N_{ m ref}/N_{ m v}$	=	39.9233
Aniso wit	h H-(	Q0						
R(F)	=	0.0138	$R_{\rm all}(F)$	=	0.0154	$R_w(F)$	=	0.0112
$R(F^2)$	=	0.0145	$R_{\rm all}(F^2)$	=	0.0149	$R_w(F^2)$	=	0.0214
GOFw	=	1.5408	GOF	=	1.5408	$N_{ m ref}/N_{ m v}$	=	39.8851

**Table S17** Similarity indices (Whitten & Spackman, 2006) calculated with APD-Toolkit (given inpercent) for individual atoms of SPAnH. Highlighted H-atoms are bonded to carbon atoms withoutrefined anharmonic motion.

	SHADE	APD	noquadru	quadru	HARt
Н3	<mark>0.735439</mark>	<mark>0.250514</mark>	<mark>7.354701</mark>	<mark>1.641876</mark>	<mark>4.07361</mark>
H4	<mark>0.38486</mark>	<mark>0.250697</mark>	<mark>4.283626</mark>	1.04242	<mark>3.111311</mark>
Н5	1.59031	0.811745	2.659268	0.335058	<mark>0.92858</mark>
H6	<mark>0.797685</mark>	0.48231	<mark>2.690543</mark>	0.234528	0.83028
H8	<mark>0.094343</mark>	<mark>0.180266</mark>	<mark>7.975837</mark>	<mark>4.333563</mark>	<mark>5.077343</mark>
H10	0.431375	0.13544	<mark>5.783256</mark>	2.003877	<mark>2.484346</mark>
H11	<mark>0.547429</mark>	0.071501	2.560531	<mark>0.291067</mark>	1.463826
H12	1.943098	<mark>1.083164</mark>	<mark>1.999171</mark>	<mark>0.094068</mark>	<mark>0.814161</mark>
H13	<mark>2.728587</mark>	1.931264	2.730781	0.637403	0.603542
H16	<mark>1.18959</mark>	<mark>1.687781</mark>	<mark>2.981933</mark>	0.450013	<mark>0.666627</mark>
H17	<mark>0.699078</mark>	<mark>0.610918</mark>	<mark>2.783831</mark>	<mark>0.378383</mark>	<mark>1.658324</mark>
H18	<mark>1.111575</mark>	<mark>0.703224</mark>	<mark>2.839813</mark>	0.299353	<mark>1.148406</mark>
H19	0.810532	<mark>0.564725</mark>	<mark>2.766635</mark>	0.352779	<mark>0.880654</mark>
H(20)	<mark>0.887128</mark>	<mark>0.252982</mark>	<mark>2.583762</mark>	<mark>0.405157</mark>	<mark>0.624032</mark>
H22	<mark>1.03361</mark>	<mark>0.825128</mark>	<mark>2.695552</mark>	<mark>0.541161</mark>	1.862767
H23	1.501707	<mark>0.638279</mark>	<mark>3.499417</mark>	0.622953	1.072131
H24	1.592182	<mark>0.586143</mark>	<mark>2.958628</mark>	0.533845	1.214036
H25	1.001255	<mark>0.505003</mark>	1.376693	<mark>0.134755</mark>	<mark>0.285275</mark>
H26	<mark>1.017398</mark>	1.204453	<mark>4.427437</mark>	<mark>0.718329</mark>	<mark>2.582598</mark>
H(29)	<mark>0.403484</mark>	<mark>0.069079</mark>	<mark>3.984139</mark>	0.689565	1.212212
H30	<mark>0.284538</mark>	<mark>0.337816</mark>	<mark>2.784749</mark>	<mark>0.321147</mark>	<mark>2.202443</mark>
H31	<mark>0.78288</mark>	<mark>0.247521</mark>	<mark>2.691152</mark>	<mark>0.342819</mark>	<mark>0.663706</mark>
H32	<mark>0.726718</mark>	<mark>0.439748</mark>	<mark>2.135865</mark>	<mark>0.628039</mark>	<mark>0.612454</mark>
H34	<mark>0.173897</mark>	<mark>0.06761</mark>	<mark>3.626514</mark>	<mark>0.849848</mark>	<mark>1.593553</mark>
H36	1.292339	<mark>0.78188</mark>	<mark>2.247399</mark>	0.581743	1.53922
H37	1.478092	<mark>0.446</mark>	<mark>2.170788</mark>	0.129029	<mark>0.719739</mark>

H38	<mark>1.818987</mark>	<mark>0.102386</mark>	<mark>2.094934</mark>	0.098027	<mark>0.777769</mark>
H39	1.60285	<mark>0.619808</mark>	<mark>5.668066</mark>	<mark>1.58488</mark>	<mark>2.169242</mark>
H42	<mark>0.998851</mark>	<mark>1.109014</mark>	<mark>3.549686</mark>	<mark>0.788704</mark>	<mark>2.323013</mark>
H43	<mark>7.414878</mark>	7.209315	<mark>3.368994</mark>	<mark>4.65283</mark>	<mark>5.758804</mark>
H44	<mark>2.285165</mark>	<mark>0.340706</mark>	1.42859	0.182815	<mark>0.771767</mark>
H45	5.310498	<mark>6.88449</mark>	<mark>3.093478</mark>	<mark>5.907403</mark>	<mark>4.594388</mark>
H46	<mark>2.1169</mark>	<mark>0.831891</mark>	1.270228	0.83551	0.772535
H48	<mark>3.642694</mark>	<mark>0.541393</mark>	<mark>1.999425</mark>	0.510603	<mark>0.943654</mark>
H49	<mark>6.064898</mark>	<mark>1.635144</mark>	<mark>0.930977</mark>	0.201076	1.065336
H50	<mark>6.189183</mark>	<mark>0.767809</mark>	1.674536	0.327044	<mark>1.299554</mark>
H51	<mark>4.339047</mark>	<mark>0.79767</mark>	1.96537	<mark>0.380577</mark>	1.186696
H52	<mark>0.990255</mark>	1.014624	<mark>3.821436</mark>	<mark>0.698866</mark>	1.821718
$\langle S_{NX} \rangle$	1.78982461	<mark>0.97419582</mark>	<mark>3.09099318</mark>	<mark>0.91476613</mark>	<mark>1.66867505</mark>
$\langle S_{NX} \rangle$	0.96757544	0.56767007	<mark>3.44247807</mark>	0.75690652	1.59877789
No anharm.					

### S3.4. Fingerprint Plot of Intermolecular Close Contacts in SPAnH

![](_page_33_Figure_3.jpeg)

**Figure S16** Fingerprint plot of the first molecule in the asymmetric unit of SPAnH generated with *CrystalExplorer 17.5* (Turner *et al.*, 2018).

### S3.5. Calculated Intermolecular Interaction Energies

For "Neutron Data (tab. distances)", calculations were performed based on a refined with ADPs from Neutron results and C-H bond distances fixed to values provided by the *INVARIOM* database (1.08225 Å).

**Table S18** Interaction energies between H8 / H10 and the neighbouring anthracene moiety. The givendistances are calculated between the H-Atom and the centre of the anthracene moiety. All energies givenin kJ/mol.

	$E_{\rm ES}$	$E_{\rm ex-rep}$	E _{disp}	$E_{\rm tot}$	$E_{\rm ES}$	$E_{\rm ex-rep}$	E _{disp}	E _{tot}
Neutron Data	-9.3	15.5	-5.6	0.5	-11.4	25.9	-8.4	6.1
Neutron Data	-9.3	15.5	-5.6	0.5	-11.4	25.9	-8.4	6.1
(tab. distances)								
SHADE	-8.2	15.1	-5.5	1.4	-10.3	25.9	-8.5	7.2
APD	-8.6	15.1	9.6	0.9	-10.7	25.9	-8.5	6.7
Aniso-H	-8.8	15.1	-5.5	0.7	-11.0	25.9	-8.5	6.4
Aniso-H (no Q0)	-5.3	15.1	-5.5	4.3	-6.1	25.9	-8.5	11.4

#### S3.6. List of Evaluated BCP between Neighbouring SPAnH Molecules

The observed electron densities at the investigated intermolecular BCPs are rather small. The standard uncertainties of the BCPs and Laplacian are of the same order of magnitude as the values theirselves and should therefore be treated careful regarding their validity.

**Table S19** Properties of the BCP between H8 and X2_C30. X2_C30 is generated from the asymmetric unit by applying the symmetry operation –X, 1-Y, 2-Z to the SPAnH molecule.

	ρ	$\nabla^2 \rho(\mathbf{r})$	R _{ij}	d1	d2	Hessian	Eigenvalı	ies	Е
Neutron Data	0.05	0.45	2.7512	1.0816	1.6696	-0.16	-0.09	0.71	0.8
Neutron Data (tab. distances)	0.05	0.45	2.7512	1.0816	1.6696	-0.16	-0.09	0.71	0.8
SHADE_H	0.05	0.49	2.7535	1.0752	1.6783	-0.14	-0.08	0.7	0.87
APD-H	0.05	0.467	2.7575	1.0838	1.6737	-0.15	-0.08	0.7	0.83
Aniso-H	0.05	0.46	2.7565	1.0801	1.6763	-0.15	-0.08	0.69	0.84
Aniso-H (no Q0)	0.03	0.51	2.8938	1.0918	1.802	-0.07	-0.02	0.6	2.13

**Table S20** Properties of the BCP between H10 and X2_C28. X2_C28 is generated from the asymmetric unit by applying the symmetry operation –X, 1-Y, 2-Z to the SPAnH molecule. The BCP given for Aniso-H (no Q0) was found between H10 and X2_C27 instead. The BCP given for Aniso-H (no Q0) was found between H10 and X2_C40 instead. Both of these atoms are generated from the aforementioned symmetry operation.

	ρ	$\nabla^2  ho(\mathbf{r})$	R _{ij}	d1	d2	Hessian	Eigenvalu	ies	Е
Neutron Data	0.07	0.59	2.7146	1.0316	1.683	-0.2	-0.08	0.86	1.57
Neutron Data (tab. distances)	0.07	0.585	2.7146	1.0316	1.683	-0.2	-0.08	0.86	1.57
SHADE_H	0.06	0.63	2.7122	1.0232	1.689	-0.17	-0.06	0.86	2.1
APD-H	0.07	0.61	2.7148	1.0286	1.6862	-0.19	-0.07	0.86	1.75
Aniso-H	0.07	0.60	2.7067	1.0247	1.682	-0.19	-0.07	0.85	1.71
Aniso-H (no Q0)	0.051	0.633	2.7452	1.1086	1.6365	-0.1	-0.05	0.79	0.91