

Volume 75 (2019)

Supporting information for article:

Electronic criterion for categorizing the chalcogen and halogen bonds: sulfur–iodine interactions in crystals Ekaterina Bartashevich, Svetlana Muhitdinova, Irina Yushina and Vladimir Tsirelson

1 Scatterplot of θ , o and ϕ , o angles for S...I interactions in the set of considered crystals

Refcode	References	Noncovalent interaction	θ_{calc}, \circ	θ _{exp} , °	φ _{calc} , °	φ _{exp} , °	d(S…I) _{calc} , Å	d(SI) _{exp} , Å
BIYDUK	Takemura <i>et</i> <i>al.</i> , 2014 <i>a</i>	S(1)I(1)	118.3	107.8	172.3	172.2	3.3119	3.3085
CUZDEH	Knight <i>et al.,</i> 2010	S(1)I(1)	107.8	108.6	175.4	176.6	3.5696	3.5038
DUBGEO	Hubscher <i>et</i> <i>al.</i> , 2015	S(1)I(1)	114.7	115.7	169.4	168.8	3.5870	3.6073
FAJPUB	Herbstein <i>et</i>	S(1)I(1)	105.2	107.0	175.9	176.7	2.8386	2.8248
FAJPUB	al., 1986	S(2)I(3)	106.2	107.2	176.3	176.1	2.8157	2.8055
FAJPUB		S(2)I(2)	179.4	177.7	81.5	82.4	3.7090	3.7087
FAJRAJ	Herbsteinet	S(1)I(1)	103.6	102.7	171.3	173.0	2.8080	2.8025
FAJRAJ	al., 1986	S(2)I(3)	114.1	114.7	175.9	177.0	2.9085	2.9012
GIGBED	Minkwitz et al., 1988	S(1)I(1)	111.4	113.8	176.8	175.6	3.2110	3.2106
GOJMUP	Behl <i>et al.</i> , 2012	S(2)I(1)	139.8	139.4	156.8	154.9	3.6753	3.7080
GUDJUL	Ohta <i>et al.</i> ,	S(2)I(1)	115.2	117.7	167.2	165.3	3.5590	3.5363

Table S1	Calculated geometrical	characteristics of S	.I interactions	for the test sam	ple of crys	tals
	0					

Supporting information, sup-2

	2009							
HIZQOY	Takemura et	S(1)I(1)	91.3	103.7	170.8	171.0	3.2030	3.2644
	al., 2014b							
HOVLUA	SweeKuan	S(1)I(3)	168.7	169.5	88.5	92.7	3.7113	3.6597
HOVLUA	Yen et al.,	S(1)I(2)	169.0	166.7	167.6	166.3	3.6284	3.6194
	2009							
ICILEL	Batsanov et	S(2)I(4)	118.3	119.8	163.7	163.0	3.4931	3.5411
ICILEL	al., 2001	S(3)I(1)	132.8	132.0	130.6	131.8	3.6796	3.7310
IFOSUL01	Wolstenholme	S(5)I(1)	104.4	104.6	178.8	177.1	3.4514	3.5153
IFOSUL01	<i>et al.,</i> 2006	S(1)I(1A)	147.0	146.2	80.5	80.9	3.6924	3.7678
LEXSEN	Cseh <i>et al.</i> ,	S(1)I(2)	124.9	123.0	167.8	167.3	3.6223	3.6407
	2007							
NAHTIC	Rajesh Goud	S(1)I(1)	93.9	92.6	170.9	171.1	3.4160	3.1258
	<i>et al.</i> , 2016							
NAKROH	Werz et al.,	S(1)I(2)	154.1	161.9	89.9	96.2	3.8042	3.6462
NAKROH	2005	S(1)I(3)	168.3	163.9	151.5	151.5	3.7255	3.6442
NAKROH		S(2)I(3)	165.2	172.8	68.5	69.8	3.8445	3.7700
NEPJIB	Makarov et	S(2)I(1)	124.4	124.1	160.5	165.0	3.6949	3.7211
NEPJIB	al., 2001	S(4)I(1)	147.2	148.5	102.8	103.3	3.7933	3.9056
NICSIB	Bock et al.,	S(1)I(1)	103.6	102.6	176.9	177.6	2.7831	2.7472
NICSIB	1997	S(2)I(3)	95.4	94.2	171.0	170.3	3.1026	3.1230
PEGZUY	Szlachcic et	S(2)I(1)	106.3	104.5	177.5	177.8	2.8209	2.7845
PEGZUY	al., 2013	S(1)I(2)	142.2	146.8	171.5	174.6	3.5141	3.5957
PIPXUJ	Kyoung-Soon	S(1)I(2)	92.5	91.2	144.3	144.9	3.6772	3.7019
PIPXUJ	Shin <i>et al.,</i>	S(4)I(1)	122.0	121.9	167.3	167.9	3.6516	3.6366
	2017							
PUSREA	Blake <i>et al.,</i>	S(4)I(7)	100.2	120.2	170.6	172.9	2.8928	2.8400
PUSREA	1998	S(3)I(5)	99.6	99.3	176.7	178.8	2.8768	2.8281
PUSREA		S(1)I(1)	98.8	99.9	179.4	178.4	2.8123	2.7963
DUCDUO	Dlalas y d	C(1) $I(1D)$	106.0	172.7	1717	107.4	2 1025	2 2 1 2 2
PUSKUQ	Blake <i>et al.</i> ,	S(1)I(1B)	106.8	1/2./	1/1./	107.4	3.1925	3.2132
DEDZON	1998 Declary	$\mathbf{C}(1) = \mathbf{I}(1)$	0((0(2	174.2	172.2	2 12(7	2 1 4 9 9
REBZON	BOCK <i>et</i>	S(1)I(1)	96.6	96.3	1/4.3	1/3.3	3.1367	3.1488
REBZON	<i>al.</i> , 1996	S(2)I(2)	103.9	103.3	1//.5	1/8.4	3.0020	3.0250
SEJQAC	Bol'shakov	S(4)I(4)	157.6	160.0	143.3	144.0	3.6725	3.6302
SEJQAC	<i>et al.</i> , 2017	S(3)I(4)	167.4	173.3	178.2	178.3	3.4570	3.4072
SEJQAC		S(1)I(4)	169.5	174.0	106.4	104.0	3.4171	3.4322
SEJQAC	-	S(1)I(2)	171.7	174.1	122.6	125.2	3.2471	3.4312
SEJQAC		S(3)I(2)	177.1	178.1	96.2	98.3	3.3736	3.5113

Supporting information, sup-3

WEDHAQ	Aragoni et	S(1)I(3)	172.0	173.0	173.1	172.2	3.7842	3.7790
	al., 2012							
WURGUM	Tamilselvi et	S(1)I(3)	156.6	156.2	164.4	163.1	3.5283	3.5970
WURGUM	al., 2012	S(2)I(2)	158.2	162.3	166.6	174.8	3.4108	3.5080
WURGUM		S(3)I(2)	176.9	177.0	124.6	124.6	3.7487	3.6680
XEPXUN	MijoonLee et	S(2)I(1)	106.4	104.4	174.8	173.6	3.4740	3.4741
	al., 2012							
YEWPAR	Cristiani et	S(3)I(5)	104.0	104.5	173.2	174.5	2.9341	2.9336
YEWPAR	al., 1993	S(1)I(1)	104.8	101.6	173.6	173.5	2.8534	2.8803
YEWPAR		S(1)I(4)	142.6	144.4	117.3	118.0	3.7242	3.7427
YEWPAR		S(1)I(6)	163.7	166.5	128.4	130.7	3.7342	3.7342
YEWPAR		S(2)I(3)	95.9	104.2	174.1	175.1	2.8650	2.8650

Table S2	Calculated topological characteristics of electron density in bond critical points for S
interactions	n considerate crystals

Refcode	Noncovalent interaction	$\rho(r_{bcp})$	ED_{min}
BIYDUK	S(1)I(1)	0.0171	0.0171
CUZDEH	S(1)I(1)	0.0109	0.0109
DUBGEO	S(1)I(1)	0.0106	0.0106
FAJPUB	S(1)I(1)	0.0426	0.0426
FAJPUB	S(2)I(3)	0.0439	0.0438
FAJPUB	S(2)I(2)	0.0086	0.0086
FAJRAJ	S(1)I(1)	0.0449	0.0448
FAJRAJ	S(2)I(3)	0.0369	0.0368
GIGBED	S(1)I(1)	0.0201	0.0200
GOJMUP	S(2)I(1)	0.0080	0.008
GUDJUL	S(2)I(1)	0.0099	0.0099
HIZQOY	S(1)I(1)	0.0209	0.0209
HOVLUA	S(1)I(3)	0.0088	0.0087
HOVLUA	S(1)I(2)	0.0087	0.0087
ICILEL	S(2)I(4)	0.0118	0.0118
ICILEL	S(3)I(1)	0.0089	0.0089
IFOSUL01	S(5)I(1)	0.0124	0.0124
IFOSUL01	S(1)I(1A)	0.0092	0.0092
LEXSEN	S(1)I(2)	0.0060	0.0088
NAHTIC	S(1)I(1)	0.0239	0.0239
NAKROH	S(1)I(2)	0.0075	0.0075
NAKROH	S(1)I(3)	0.0078	0.0078
NAKROH	S(2)I(3)	0.0066	0.0066
NEPJIB	S(2)I(1)	0.0072	0.0072
NEPJIB	S(4)I(1)	0.0073	0.0073
NICSIB	S(1)I(1)	0.0461	0.0466
NICSIB	S(2)I(3)	0.0269	0.0269
PEGZUY	S(2)I(1)	0.0436	0.0436
PEGZUY	S(1)I(2)	0.0118	0.0117
PIPXUJ	S(1)I(2)	0.0094	0.0093
PIPXUJ	S(4)I(1)	0.0085	0.0084
PUSREA	S(4)I(7)	0.0384	0.0384

Supporting information, sup-4

PUSREA	S(3)I(5)	0.0447	0.0447
PUSREA	S(1)I(1)	0.0395	0.0395
PUSRUQ	S(1)I(1B)	0.0228	0.0228
REBZON	S(1)I(1)	0.0252	0.0252
REBZON	S(2)I(2)	0.0315	0.0314
SEJQAC	S(4)I(4)	0.0083	0.0083
SEJQAC	S(3)I(4)	0.0118	0.0118
SEJQAC	S(1)I(4)	0.0138	0.0138
SEJQAC	S(1)I(2)	0.0200	0.0200
SEJQAC	S(3)I(2)	0.0158	0.0157
WEDHAQ	S(1)I(3)	0.0068	0.0067
WURGUM	S(1)I(3)	0.0105	0.0105
WURGUM	S(2)I(2)	0.0139	0.0139
WURGUM	S(3)I(2)	0.0079	0.0079
XEPXUN	S(2)I(1)	0.0129	0.0129
YEWPAR	S(3)I(5)	0.0355	0.0355
YEWPAR	S(1)I(1)	0.0409	0.0408
YEWPAR	S(1)I(4)	0.0092	0.0092
YEWPAR	S(1)I(6)	0.0078	0.0078
YEWPAR	S(2)I(3)	0.0395	0.0395

Basis sets for S (Francl et al., 1982; Gill et al., 1992) and I (Towler, 1995) atoms in CRYSTAL format:

165

0062.1.		
21917.100000	0.0018690	
3301.4900000	0.0142300	
754.1460000	0.0696960	
212.7110000	0.2384870	
67.9896000	0.4833070	
23.0515000	0.3380740	
0168.1.		
423.7350000	-0.0023767	0.0040610
100.7100000	-0.0316930	0.0306810
32.1599000	-0.1133170	0.1304520
11.8079000	0.0560900	0.3272050
4.6311000	0.5922550	0.4528510
1.8702500	0.4550060	0.2560420
0136.1.		
2.6158400	-0.2503740	-0.0145110
0.9221670	0.0669570	0.3102630
0.3412870	1.0545100	0.7544830
0110.1.		
0.1171670	1.0000000	1.0000000
0310.1.		
0.6500000	1.0000000	
53 11		
0 0 9 2.0 1.1146	3	
3796580.0	0.0000486	
557679.0	0.0003926	
120134.0	0.0022873	
30906.4	0.011153	
8941.5	0.046196	
2853.97	0.153983	
1012.96	0.349652	
403.354 0.4296	35	
169.853 0.2000	6	

Supporting information, sup-5

0 1 7 8.0 1.13163 10780.9000 -0.0002564 0.0010711 2503.2700 -0.0060868 0.0097716 769.8280 -0.051254 0.057486 274.7070 -0.147205 0.219537 111.3650 0.112441 0.461365 51.8016 0.578709 0.455975 25.2655 0.472067 0.215153 0 1 6 8.0 1.15719 231.9100 0.0065595 -0.013354 91.9272 -0.0265300 -0.066906 38.3184 -0.316678 0.0087493 17.4017 -0.036354 0.828479 8.14936 0.902330 1.302420 3.88355 0.457207 0.442669 03610.01.0 407.3970 0.013328 121.6230 0.093425 45.5984 0.30357 18.9713 0.470024 8.4500 0.30913 3.65671 0.053371 0 1 3 8.0 1.0 9.05308 -2.34517 -0.083203 4.91160 -0.545076 0.308103 2.31586 5.55305 0.713035 0 1 1 7.0 1.0 1.13401 1.0 1.0 03310.01.0 6.76221 0.221231 2.69744 0.563316 1.09895 0.414919 0310.01.0 0.419302 1.0 0 1 1 0.0 1.0 0.557375 1.0 1.0 0 1 1 0.0 1.0 0.226293 1.0 1.0 0 1 1 0.0 1.0 0.08542 1.0 1.0

Figure S1 Histrogram of S...I distances (Å) distribution and the effect of X-Ray refinement temperature on it

The mean value of S...I contacts length is as follows:

- a) 3. 6404 Å for all contacts without taking into account the temperature of X-ray refinement;
- b) 3.6497 Å (+0.0093 Å comparing to complete subset above mentioned in (a)) for contacts in the structures refined in the temperature range 200 293 K;
- c) 3.6338 Å (-0.0066 Å comparing to complete subset above mentioned in (a)) for the temperature range 100 200 K;
- d) 3.6017 Å (-0.0387 Å comparing to complete subset above mentioned in (a)) for the temperatures 6 100 K.

Table S3Comparison of geometric characteristics: S...I distance, φ and θ angles depending on theX-Ray refinement temperature

REFCODE	Temperature, K	SI distance, Å	θ,°	φ,°	SI change, Å*
CILHIO40	100	3.722	165.8	105.7	-0.052
CILHIO41	150	3.739	166.2	105.7	-0.035
CILHIO42	200	3.757	166.6	105.6	-0.017
CILHIO43	250	3.774	167.1	105.5	0.000
ECONIN	172	3.632	85.5	81.5	0.000
EGOPUN	1/3	3.756	80.7	76.6	0.000
EGOPUN01	90	3.608	85.1	81.5	-0.024

Supporting information, sup-7

		3.724	80.8	76.3	-0.032
IFOSUL	RT	3.498	104.4	177.3	0.000
IFOSUL01	112	3.768	146.2	80.9	**
	115	3.515	104.6	177.1	+0.017
ICAMAD	120	3.728	134.7	163.7	**
ISAMAK	120	3.744	151.9	149.4	+0.028
ISAMAR01	RT	3.716	153.2	148.8	0.000
DELVUZ	150	3.751	158.6	61.8	**
PELAUZ	150	3.721	157.8	87.1	-0.043
PELHUZ01	RT	3.764	158.2	87.4	0.000
PIPYEO	RT	3.719	177.3	91.6	0.000
PIPYEO01	150	3.649	178.1	91.5	-0.070
DIDVEGOO	100	3.627	177.8	92.1	-0.092
PIPYEO02	100	3.762	156.4	90.6	**
QINCUN	RT	3.729	146.9	130.9	0.000
	20	3.62	146.0	128.8	-0.109
QINCUN01	20	3.737	164.0	87.4	**
ODICIDIO	150	3.778	163.5	88.0	**
QINCUN02	150	3.657	147.7	129.5	-0.072
	100	3.639	147.2	129.1	-0.090
QINCUNUS	100	3.761	163.6	87.7	**
QINDOI	RT	3.728	140.9	130.0	0.000
	20	3.721	164.4	86.5	**
QINDOI01	20	3.623	145.1	128.9	-0.105
	150	3.758	164.6	86.7	**
QINDOI02	150	3.667	144.5	128.7	-0.061
QINPEK	RT	3.724	147.4	131.4	0.000
OINIDER 01	20	3.71	163.8	88.1	**
QINPERUI	20	3.589	148.3	129.7	-0.135
ONDEROS	150	3.765	163.2	88.6	**
QINPEK02	150	3.644	148.5	129.8	-0.080
	рт	3.562	167.9	92.4	0.000
AIVDAF	KI	3.749	169.9	72.4	0.000
	100	3.715	170.2	72.6	-0.026
ΛΙΥΒΑΓΟΙ	100	3.536	167.9	91.6	-0.034

*with respect to the structure determined at the highest temperature ** Newly observed contacts in low-temperature determination

For two structures IFOSUL and ISAMAR we observe elongation of the exact S...I distances with decrease of temperatures in conditions of X-ray experiment, in all other cases we observe expectable shortening. The shortening value for the exact contacts in several structures is much higher than the shortening for the mean values discussed above: for example, in QINPEK, QINDOI and QINCUN, where the difference is above 0.1 Å. The values of φ and θ angles differ not significantly: the maximum change achieves 4.5° for QINDOI structure. In several cases we observe the emergence of new rather long S...I contacts in low-temperature structures due to overall shortening of intermolecular distances and compression of crystal packings.

As we cannot directly take into account the effect of the temperature in quantum-chemical calculations, we still can compare the differences in S...I distances for different temperature of experiments and with the change of method and approximation used in calculations. In both cases we obtained the similar results: Δ (S...I) in B3LYP calculation of HOVLUA with respect to its crystal structure (Δ =0.032 Å, Table 1) is very similar to Δ = 0.039 Å which follows from consideration of the CSD structures determined in the temperature range 6-100 K. These values are close and we can reliably reproduce the experimental structural features from theoretic point of view for crystals without low-temperature phase transitions.

References for Supplementary information

Aragoni, M. C., Arca, M., Caltagirone, C., Castellano, C., Demartin, F., Garau, A., Isaia, F., Lippolis, V., Montis, R. &Pintus, A. (2012). *Cryst. Eng. Comm.* 14, 5809–5823.

Batsanov, A. S., Bryce M. R., Chesney, A., Howard, J. A. K., John, D. E., Moore, A. J., Wood, C. L.,

Gershtenman, H., Becker, J. Y., Khodorkovsky, V. Y., Ellern, A., Bernstein, J., Perepichka, I. F., Rotello, V.,

Gray, M. & Cuello, A. O. (2001). J. Mater. Chem. 11, 2181-2191.

Behl, M., Schollmeyer, D. & Zentel, R. (2012). CSD Communication.

Blake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek,

C. & Schroder, M. (1998). J. Chem. Soc., Dalton Trans. 2037-2046.

Bock, H., Nagel, N. & Seibel, A. (1997). Liebigs Ann. 10, 2151-2159.

Bock, H., Rauschenbach, A., Nather, C., Kleine, M. & Havlas, Z. (1996). Liebigs Ann. 12, 21852194.

Chang M. & Mobashery, S. (2012). ACS. Med. Chem. Lett. 3, 490-495.

Cseh, L., Mehl, G. H., Clark, S. & Archibald S. J. (2007). Acta Crystallogr. Sect. E63, 01393-01394.

Francl, M. M., Petro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., De Frees D. J. & Pople, J. A. (1982). *J. Chem. Phys.***77**, 3654.

Gill, P. M. W., Johnson, B. G., Pople, J. A. & Frisch, M. J. (1992). Chem. Phys. Lett. 197, 499.

Goud R., N., Bolton, O., Burgess, E. C. & Matzger, A. J. (2016). Cryst. Growth Des. 16, 1765.

Herbstein, F. H., Ashkenazi, P., Kaftory, M., Kapon, M., Reisner, G. M. & Ginsburg, D. (1986). *Acta Crystallogr. Sect.* **B42**, 575–601.

Hubscher, J., Gruber, T., Seichter, W., Kortus, J. & Weber, E. (2015). J. Mol. Struct. 1091, 88.

Knight, F. R., Fuller, A. L., Buhl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). Chem.-Eur. J. 16, 7605-7616.

Makarov, A. Yu., Shakirov, M. M., Shuvaev, K. V., Bagryanskaya, I. Yu., Gatilov, Y. V. &Zibarev, A. V. (2001). *Chem. Commun.*1774–1775.

Lee M., Ikejiri, M., Klimpel, D., Toth, M., Espahbodi, M., Hesek, D., Forbes, C., Kumarasiri, M., Noll, B. C., Minkwitz, R., Preut, H. & Sawatzki, J. (1988). Z. Naturforsch., B43, 399.

Ohta, A., Kuroda, S., Nguyen Chung Thanh, Terasawa, K., Fujimori, K., Nakajima, K. & Oda, M. (2009). *Heterocycles* **79**, **451–470**.

Shin K.-S., Jeannin, O., Brezgunova, M., Dahaoui, S., Aubert, E., Espinosa, E., Auban-Senzier, P., Swietlik, R., Frackowiak, A. & Fourmigue, M. (2014). *Dalton Trans.* **43**, 5280–5291.

Szlachcic, P., Seidler, T. & Stadnicka, K. (2013). J. Mol. Struct. 1033, 162-170.

Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014*a*). *Chem.-Eur. J.* **20**, 6721–6732.

Takemura, A., McAllister, L. J., Karadakov, P. B., Pridmore, N. E., Whitwood, A. C. & Bruce, D. W. (2014*b*). *Cryst. Eng. Comm.***16**, 4254.

Tamilselvi, A. & Mugesh, G. (2010). Bioorganic & Medicinal Chemistry Letters 20, 3692–3697.

Towler, M. D. (1995). http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html