

Volume 74 (2018)

Supporting information for article:

Similarities and differences in the crystal packing of halogen substituted Indole derivatives

Rahul Shukla, Paramveer Singh, Piyush Panini and Deepak Chopra

Entry	Substitution	Sample	Phenylhydrazine	Cyclohexanone (ml)	Product (g)	Yield
		code	(g)			(%)
1	Unsubstituted	HxP	0.186	0.178	0.280	94
2	<i>o</i> - F	HxF ₂	0.3	0.250	0.410	91
3	<i>m</i> -F	HxF ₃	0.5	0.410	0.657	88
4	<i>p</i> - F	HxF ₄	0.5	0.410	0.670	89
5	o-Cl	HxCl ₂	0.5	0.218	0.690	96
6	m-Cl	HxCl ₃	0.5	0.363	0.673	93.5
7	p-Cl	HxCl ₄	0.5	0.363	0.685	95
8	o-Br	HxBr ₂	0.5	0.280	0.628	94
9	<i>m</i> -Br	HxBr ₃	0.5	0.280	0.590	88
10	<i>p</i> -Br	HxBr ₄	0.5	0.280	0.610	91

Table S1: Weights and corresponding yields of product for Hx

Table S2: Weights and corresponding yields of product for Hp

Entry	Substitution	Sample	Phenylhydrazine Cycloheptanone		Product(g)	Yield
		code	(g)	(ml)		(%)
1	Unsubstituted	HpP	0.186g	0.178ml	0.280g	94
2	<i>o</i> - F	HpF ₂	0.3	0.281	0.455	95
3	<i>m</i> -F	HpF ₃	0.3	0.281	0.421	88
4	<i>p</i> - F	HpF ₄	0.3	0.281	0.433	91
5	o-Cl	HpCl ₂	0.5	0.415	0.745	97
6	m-Cl	HpCl ₃	0.5	0.415	0.690	80
7	p-Cl	HpCl ₄	0.5	0.415	0.730	95
8	o-Br	HpBr ₂	0.5	0.280	0.690	98
9	<i>m</i> -Br	HpBr ₃	0.5	0.280	0.65	92
10	<i>p</i> -Br	HpBr ₄	0.5	0.280	0.678	96

Table S3: List of chemical shift (δ in ppm) for N-H and IR stretching frequency (in cm⁻¹) of N-H bond

S.N.	Sample Code	FTIR(N-H)	Ν-Η (δ)	S.N.	Sample Code	FTIR (N-H)	Ν-Η (δ)
1	HxP	3393	7.57	11	HpP	3422	7.82
2	HxF2	3395	7.76	12	HpF2	3398	7.85
3	HxF3	3395	7.59	13	HpF3	3402	7.79
4	HxF4	3408	7.59	14	HpF4	3399	7.76
5	HxCl2	3421	7.76	15	HpCl2	3392	7.81
6	HxCl3	3395	7.66	16	HpC13	3399	7.58

7	HxCl4	3405	7.66	17	HpCl4	3402	7.58
8	HxBr2	3340	7.62	18	HpBr2	3395	7.54
9	HxBr3	3407	7.59	19	HpBr3	3400	7.63
10	HxBr4	3406	7.62	20	HpBr4	3404	7.63

For Series Hx

2,3,4,9-tetrahydro-1H-carbazole (HxP): Yield: 94%, FTIR (in cm⁻¹: KBr): 3393, 2925, 1623, ¹H NMR (400 MHz, CDCl₃)) δ 7. 59 (s, 1H), 7.41 (d, 1H), 7.05 (dd, *J* = 8.5, 5.4 Hz, 1H), 6.80 (dd, *J* = 9.8, 2.2 Hz, 1H), 6.77 – 6.72 (m, 1H), 2.65 – 2.58 (m, *J* = 5.9 Hz, 2H), 2.59 (t, *J* = 5.9 Hz, 2H) 1.81 (tt, *J* = 10.4, 5.0 Hz, 4H).

2. 8-fluoro-2,3,4,9-tetrahydro-1H-carbazole (HxF2): Yield: 91%, FTIR (in cm⁻¹: KBr): 3395, 2926, 1625, ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 6.89 (td, *J* = 7.9, 4.8 Hz, 1H), 6.75 (dd, *J* = 11.2, 7.9 Hz, 1H), 2.68 (t, *J* = 5.9 Hz, 2H), 2.63 (t, *J* = 5.9 Hz, 2H), 1.88 – 1.76 (m, 4H).

3. 7-fluoro-2,3,4,9-tetrahydro-1H-carbazole(HxF3): Yield: 88%, FTIR (in cm⁻¹: KBr):
3395, 2926, 1625, ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.27 (dd, J = 8.5, 5.4 Hz, 1H),
6.89 (dd, J = 9.8, 2.2 Hz, 1H), 6.79 - 6.72 (m, 1H), 2.67 - 2.58 (m, J = 5.9 Hz, 2H), 2.61 (t, J = 5.9 Hz, 2H) 1.81 (tt, J = 10.4, 5.0 Hz, 4H).

4. 6-fluoro-2,3,4,9-tetrahydro-1H-carbazole (HxF4): Yield: 89%, FTIR (in cm⁻¹: KBr): 3408, 2933, 1583, 1446, ¹H NMR (400 MHz, CDCl₃): δ 7.59 (s, 1H), 7.10 (dd, *J* = 8.7, 4.3 Hz, 1H), 7.02 (dd, *J* = 9.6, 2.4 Hz, 1H), 6.77 (t, *J* = 9.1 Hz, 1H), 2.65 (t, *J* = 5.7 Hz, 2H), 2.59 (t, *J* = 5.7 Hz, 2H), 1.90 – 1.74 (m, 4H).

5. 8-chloro-2,3,4,9-tetrahydro-1H-carbazole(HxCl2): Yield: 96%, FTIR (in cm⁻¹: KBr): 3421, 2931, 1673, 1466, ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 6.89 (td, *J* = 7.9, 4.8 Hz, 1H), 6.75 (dd, *J* = 11.2, 7.9 Hz, 1H), 2.68 (t, *J* = 5.9 Hz, 2H), 2.63 (t, *J* = 5.9 Hz, 2H), 1.88 – 1.76 (m, 4H).

6. 7-chloro-2,3,4,9-tetrahydro-1H-carbazole(HxCl3): Yield: 93.5%, FTIR (in cm⁻¹: KBr): 3395, 2935, 1645, ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 1H), 7.36 – 7.31 (m, 1H), 7.11 – 7.06 (m, 1H), 7.00 – 6.95 (m, 1H), 2.64 (t, *J* = 5.8 Hz, 2H), 2.58 (t, *J* = 5.8 Hz, 2H), 1.88 – 1.74 (m, 4H).

7. 6-chloro-2,3,4,9-tetrahydro-1H-carbazole(HxCl4): Yield: 95%, FTIR (in cm⁻¹: KBr): 3405, 2937, 1654, ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 1H), 7.36 – 7.31 (m, 1H), 7.11 – 7.06 (m, 1H), 7.00 – 6.95 (m, 1H), 2.64 (t, *J* = 5.8 Hz, 2H), 2.58 (t, *J* = 5.8 Hz, 2H), 1.88 – 1.74 (m, 4H).

8. 8-bromo-2,3,4,9-tetrahydro-1H-carbazole (HxBr2): Yield: 94%, FTIR (in cm⁻¹: KBr): 3340, 2930, 1670, ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.49 (d, J = 1.2 Hz, 1H), 7.11 (dd, J = 8.5, 1.7 Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H), 2.65 (t, J = 5.9 Hz, 2H), 2.58 (t, J = 5.8 Hz, 2H), 1.87 – 1.75 (m, 4H).

9. 7-bromo-2,3,4,9-tetrahydro-1H-carbazole(HxBr3): Yield: 88%, FTIR (in cm⁻¹: KBr): 3407, 2932, 1640, ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.31 (d, J = 1.5 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.09 (dd, J = 8.4, 1.6 Hz, 1H), 2.77 – 2.66 (m, 5H), 1.69 (d, J = 8.3 Hz, 5H).

10. 6-bromo-2,3,4,9-tetrahydro-1H-carbazole(**HxBr4**): Yield: 91%, FTIR (in cm⁻¹: KBr): 3406, 2901, 1627, ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.49 (d, *J* = 1.2 Hz, 1H), 7.11 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 2.65 (t, *J* = 5.9 Hz, 2H), 2.58 (t, *J* = 5.8 Hz, 2H), 1.87 – 1.75 (m, 4H).

For Series Hp

1. 5,6,7,8,9,10-hexahydrocyclohepta[b]indole (HpP): Yield: 94%, FTIR (in cm⁻¹: KBr):
3422, 1647, ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.19 (d, j=8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.85 (td, J = 7.9, 4.8 Hz, 1H), 6.78 (dd, J = 11.1, 7.8 Hz, 1H), 2.89 – 2.73 (m, 4H), 1.88 (dd, J = 10.2, 5.4 Hz, 2H), 1.82 – 1.72 (m, 4H).

2. 4-fluoro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpF2): Yield: 95%, FTIR (in cm⁻¹: KBr): 3398, 2914, 1582, ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 6.95 (td, *J* = 7.9, 4.8 Hz, 1H), 6.78 (dd, *J* = 11.1, 7.8 Hz, 1H), 2.89 – 2.73 (m, 4H), 1.88 (dd, *J* = 10.2, 5.4 Hz, 2H), 1.82 – 1.72 (m, 4H).

3. 3-fluoro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpF3): Yield: 88%, FTIR (in cm⁻¹: KBr): 3402, 2917,1445, ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.11 (d, *J* = 7.8 Hz, 1H), 6.90 (td, *J* = 7.9, 4.8 Hz, 1H), 6.75 (dd, *J* = 11.2, 7.9 Hz, 1H), 2.68 (t, *J* = 5.9 Hz, 4H), 2.63 (t, *J* = 5.9 Hz, 2H), 1.90 – 1.76 (m, 4H).

4. 2-fluoro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpF4): Yield: 91%, FTIR (in cm⁻¹: KBr): 3391, 2919, 1578, ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 6.90 (td, *J* = 7.9, 4.8 Hz, 1H), 6.75 (dd, *J* = 11.2, 7.9 Hz, 1H), 2.68 (t, *J* = 5.9 Hz, 4H), 2.63 (t, *J* = 5.9 Hz, 2H), 1.90 – 1.76 (m, 4H).

5. 4-chloro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpCl2): Yield: 97%, FTIR (in cm⁻¹: KBr): 3393, 2925, 1624, ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.7 Hz, 1H), 2.82 – 2.76 (m, 2H), 2.75 – 2.68 (m, 2H), 1.81 (dd, *J* = 7.3, 3.3 Hz, 2H), 1.70 (dt, *J* = 10.4, 5.2 Hz, 4H).

6. 3-chloro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpCl3): Yield: 80%, FTIR (in cm⁻¹: KBr): 3399, 1641, ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 1.6 Hz, 1H), 6.96 (dd, J = 8.4, 1.8 Hz, 1H), 2.78 – 2.66 (m, 4H), 1.86 – 1.77 (m, 2H), 1.75 – 1.64 (m, 4H).

7. 2-chloro-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpCl4): Yield: 95%, FTIR (in cm⁻¹: KBr): 3402, 2928,1634, ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 1.6 Hz, 1H), 6.96 (dd, *J* = 8.4, 1.8 Hz, 1H), 2.78 – 2.66 (m, 4H), 1.86 – 1.77 (m, 2H), 1.75 – 1.64 (m, 4H).

8. 4-bromo-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpBr2): Yield: 98%, FTIR (in cm⁻¹: KBr): 3396, 2919, 1623, ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.13 (dd, *J* = 17.3, 9.7 Hz, 1H), 7.08 (dd, *J* = 8.4, 1.6 Hz, 1H), 2.73 – 2.67 (m, 4H), 1.83 – 1.78 (m, 2H), 1.70 – 1.66 (m, 4H).

9. 3-bromo-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpBr3): Yield: 92%, FTIR (in cm⁻¹: KBr): 3401, 2919, 1636, ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.51 (d, *J* = 1.3 Hz, 1H), 7.08 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 2.78 – 2.72 (m, 2H), 2.70 – 2.65 (m, 2H), 1.85 – 1.78 (m, 2H), 1.73 – 1.64 (m, 4H).

10. 2-bromo-5,6,7,8,9,10-hexahydrocyclohepta[b]indole(HpBr4): Yield: 96%, FTIR (in cm⁻¹: KBr): 3405, 2919, 1638, ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.51 (d, *J* = 1.3 Hz, 1H), 7.08 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 2.78 – 2.72 (m, 2H), 2.70 – 2.65 (m, 2H), 1.85 – 1.78 (m, 2H), 1.73 – 1.64 (m, 4H).

Figure S1a: ¹HNMR spectra of HxP in CDCl₃

Figure S1b: ¹HNMR spectra of HxF2in CDCl₃

Figure S1c: ¹HNMR spectra of HxF3in CDCl₃

Figure S1e: ¹HNMR spectra of HxCl2in CDCl₃

Figure S1f: ¹HNMR spectra of HxCl3 in CDCl₃

Figure S1g: ¹HNMR spectra of HxCl4 in CDCl₃

Figure S1i: ¹HNMR spectra of HxBr3 in CDCl₃

Figure S1j: ¹HNMR spectra of HxBr4 in CDCl₃

Figure S1k: ¹HNMR spectra of HpP in CDCl₃

Figure S1m: ¹HNMR spectra of HpF3 in CDCl₃

Figure S10: ¹HNMR spectra of HpCl2 in CDCl₃

Figure S1p: ¹HNMR spectra of HpCl3 in CDCl₃

Figure S1q: ¹HNMR spectra of HpCl4 in CDCl₃

Figure S1r: ¹HNMR spectra of HpBr2 in CDCl₃

Figure S1s: ¹HNMR spectra of HpBr3 in CDCl₃

Figure S1t: ¹HNMR spectra of HpBr4 in CDCl₃

Table S4:Crystallization conditions of all the solid compounds.

	Sample Code	Solvent/Condition	Temperature	Results
1	HxP	Ethanol, Hexane	RT	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
2	HxF2	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		CH ₃ CN,Benzene		
3	HxF3	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		CH ₃ CN,Benzene		
4	HxF4*	Methanol, Hexane	RT, 5°C	Crystal was
				obtained

		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		CH ₃ CN,Benzene		
5	HxCl2	Ethanol, Hexane, DCM	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
6	HxCl3	Ethanol, Hexane, DCM,	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ ,CH ₃ CN,Benzene		obtained
7	HxCl4	Ethanol, Hexane, DCM,	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ ,CH ₃ CN,Benzene,		obtained
8	HxBr2	Ethanol, Hexane, DCM	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
9	HxBr3	Ethanol, Hexane, DCM	RT, 5°C	No crystal was
		Ether, Ethyl acetate,	5°C	obtained
		CHCl ₃ ,CH ₃ CN,Benzene		
10	HxBr4	Ethanol, Hexane, DCM	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
11	HpP	liquid		
12	HpF2	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl ₃		obtained
		,CH ₃ CN,Benzene		
13	HpF3	Ethanol, Hexane, DCM,	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained

14	HpF4	Ethanol, Hexane, DCM,	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
15	HpCl2	Ethanol, Hexane, DCM,	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
16	HpCl3	Methanol	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl _{3,}		obtained
		,CH ₃ CN,Benzene		
17	HpCl4	Ethanol, Hexane, DCM	RT, 5°C	Crystal was
				obtained
		Ether, Ethyl acetate,	5°C	No crystal was
		CHCl ₃ , CH ₃ CN,Benzene		obtained
18	HpBr2	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		CH ₃ CN,Benzene,		
19	HpBr3	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		CH ₃ CN,Benzene,		
20	HpBr4	Ethanol, Hexane	RT, 5°C	Crystal was
				obtained
		Ether, DCM, Ethyl	5°C	No crystal was
		acetate, CHCl _{3,}		obtained
		,CH ₃ CN,Benzene		

* Polymorphs were obtained in this case

Table S5: Crystallographic and Refinement data

DATA	HxP	HxF2	HxF3	HxCl2	HxCl3	HxCl4	HxBr3	HxBr4

Formula	C ₁₂ H ₁₃ N	$C_{12}H_{12}FN$	C ₁₂ H ₁₂ FN	C ₁₂ H ₁₂ ClN	C ₁₂ H ₁₂ ClN	C ₁₂ H ₁₂ ClN	C ₁₂ H ₁₂ BrN	C ₁₂ H ₁₂ BrN
Formula Weight	171.23	189.23	189.23	205.68	205.68	205.68	250.14	250.14
CCDC No.	1827363	1827364	1827365	1827368	1827369	1827370	1827371	1827372
Crystal System;	Orthorhombic	Monoclinic;	Orthorhombic;	Orthorhombic;	Monoclinic;	Monoclinic;	Orthorhombic	Monoclinic;
Space group	P2 ₁ 2 ₁ 2 ₁	C2/c	P212121	Pbca	<i>P</i> 2 ₁	C2/c	Pbca	C2/c
a (Å)	6.1147(4)	17.4633(7)	6.1937(6)	10.8001(9)	5.713(1)	24.458(1)	10.179(2)	24.4539(18)
b (Å)	7.9668(5)	11.1118(7)	7.4492(8)	8.8083(7)	8.112(2)	6.0867(3)	8.763(2)	6.1680(4)
c (Å)	19.4856(13)	9.6718(4)	19.920(2)	21.041(2)	10.878(2)	16.309 (1)	22.946(4)	16.235 (1)
$\alpha (^{0}) / \beta (^{0}) / \gamma (^{0})$	90, 90, 90	90, 91.282(3), 90	90, 90, 90	90, 90, 90	90, 96.698(8), 90	90, 125.800(3), 90	90, 90, 90	90, 124.277(2), 90
Volume (Å ³)/	949.23(11)/	1876.33(16)/	919.1(2)/	2001.6(3)/	500.7(2)/	1969.2(2)/	2046.7(6)/	2023.5(2)/
Density (g/cm ³)	1.198	1.340	1.368	1.365	1.364	1.388	1.624	1.642
Z/ Z'	4/1	8/1	4/1	8/1	2/1	8/1	8/1	8/1
F (000)/ μ (mm ⁻¹)	368/0.070	800/ 0.092	400/0.094	864/ 0.337	216/ 0.337	864/ 0.343	1008/ 3.973	1008/ 4.019
θ (min, max)	2.76, 27.54	2.33, 30.60	2.92/30.55	2.70, 30.55	3.14, 24.96	2.51, 30.55	2.68, 30.77	3.04, 30.53
hmin,max, kmin,max,	-7, 7; -10, 10; -	-24, 20; -15, 15; -	-8, 8; -8, 10; -	-15, 15; -12,	-6, 6; -9, 9; -12,	-34, 34; -6, 8; -23,	-14, 12; -12,	-34, 34; -8, 6; -23,
l _{min,max}	25, 25	13, 12	28, 28	12; -30, 25	12	22	12; -32, 32	23
No. of ref.	23905	13542	13579	17748	4608	16814	22551	16811
No. unique ref./ obs.	2179/1530	2870/ 2491	2806/2449	3058/2457	1681/ 1561	3002/ 2601	3171/ 1976	3082/ 2685
ref.								
No. of parameters	119	127	127	128	146	146	127	146
R_all, R_obs	0.0926, 0.0557	0.0522, 0.0443	0.0548, 0.0437	0.0548, 0.0399	0.0378, 0.0327	0.0442, 0.0365	0.1031, 0.0490	0.0332, 0.0266
wR2_all, wR2_obs	0.1423, 0.1253	0.1218, 0.1164	0.1087, 0.1035	0.1089, 0.1013	0.0779, 0.0762	0.1011, 0.0968	0.1335, 0.1120	0.0712, 0.0680
$\Delta \rho_{min,max}(e { m \AA}^{-3})$	-0.179, 0.173	-0.316, 0.365	-0.263, 0.381	-0.351, 0.481	-0.174, 0.197	-0.325, 0.431	-0.796, 0.757	-0.522, 0.403
G. o. F	1.073	1.034	1.070	1.040	1.086	1.066	1.018	1.059

Table S5: continued....

DATA	HPF2	HPF4	HPCl2	HpCl3	HPCl4	HPBr2	HPBr3	HPBr4
Formula	C ₁₃ H ₁₄ FN	C ₁₃ H ₁₄ FN	C ₁₃ H ₁₄ ClN	C ₁₃ H ₁₄ ClN	C ₁₃ H ₁₄ ClN	C ₁₃ H ₁₄ BrN	C ₁₃ H ₁₄ BrN	C ₁₃ H ₁₄ BrN
Formula Weight	203.25	203.25	219.70	219.70	219.70	264.16	264.16	264.16
CCDC No.	1827374	1827375	1827376	1827377	1827378	1827379	1827380	1827381
Crystal System;	Orthorhombic;	Monoclinic;	Monoclinic;	Monoclinic;	Monoclinic;	Monoclinic;	Orthorhombic;	Monoclinic;
Space group	Pbcn	$P2_{1}/n$	$P2_{1}/c$	<i>P</i> 2 ₁ /c	$P2_{1}/n$	$P2_{1}/c$	Pbcn	$P2_{1}/c$
a (Å)	11.958(1)	9.8202(6)	8.688 (2)	12.1278(11)	9.8035(5)	8.7856(8)	23.769(4)	9.5400(4)
b (Å)	9.1060(9)	22.010(2)	11.791(2)	8.1084(7)	22.709(1)	11.645(1)	11.2921(19)	6.2063(2)
<i>c</i> (Å)	18.708(2)	9.8725(7)	10.313(2)	11.2668(10)	9.9786(6)	10.640(1)	8.2022(11)	18.8852(8)
α (°)/ β (°)/ γ (°)	90, 90, 90	90, 101.926(3),	90, 90.892(5), 90	90,108.995(2), 90	90, 101.405(2), 90	90, 90.470(4), 90	90, 90, 90	90, 98.474(1), 90
		90						
Volume (Å ³)	2037.1(3)	2087.8(2)	1056.3(3)	1047.61(16)	2177.7(2)	1088.6(2)	2201.5(6)	1105.95(7)
Density (g/cm ³)	1.325	1.293	1.382	1.393	1.340	1.612	1.594	1.587
Z/ Z'	8/1	8/2	4/1	4/1	8/2	4/1	8/1	4/1
F (000)/ μ (mm ⁻¹)	864/ 0.090	864/ 0.088	464/ 0.324	464/ 0.327	928/ 0.314	536/ 3.740	1072/ 3.699	536/ 3.681
θ (min, max)	2.76, 30.56	2.30, 30.58	2.62, 26.37	3.08, 30.50	2.30, 30.59	2.59, 24.99	3.14, 24.99	2.83, 30.51

h _{min,max} , k _{min,max} ,	-16, 17; -12,	-14, 14; -31, 31; -	-10, 10; -14, 13,	-17, 16; -9, 11; -	-13, 14; -32, 32,	-10, 10; -12, 13; -	-25, 28; -10,	-13, 13; -8, 6; -26,
l _{min,max}	13; -26, 26	14, 14	-12, 12	16, 15	-14, 14	12, 11	13; -9, 8	26
No. of ref.	40673	37051	9349	9700	30504	8642	8659	15446
No. unique ref./	3125/ 2724	6387/ 5327	2155/ 1427	3176/2619	6657/ 5351	1924/ 1719	1938/ 1763	3369/ 2972
obs. Ref.								
No. of parameters	136	271	136	136	271	136	136	136
R_all, R_obs	0.0493,	0.0571, 0.0463	0.1067, 0.0586	0.0484, 0.0374	0.0574, 0.0403	0.0450, 0.0403	0.0434,	0.0306, 0.0244
	0.0419						0.0386	
Wr2_all, Wr2_obs	0.1124,	0.1265, 0.1190	0.1447, 0.1263	0.0977, 0.0925	0.0965, 0.0898	0.1002, 0.0975	0.0968,	0.0602, 0.0577
	0.1074						0.0953	
$\Delta \rho_{min,max}(Ea^{-3})$	-0.225, 0.398	-0.285, 0.456	-0.420, 0.772	-0.253, 0.453	-0.287, 0.420	-0.952, 1.059	-0.323, 0.532	-0.550, 0.358
G. o. F	1.033	1.042	1.055	1.041	1.031	1.080	1.368	1.110

Section 4: Structural details

Figure S2a: *ORTEP*s of **series Hx** drawn at 50% ellipsoidal probability with their sample code and numbering scheme.

Figure S2b: *ORTEP*s of **series Hp** drawn at 50% ellipsoidal probability with their sample code and numbering scheme.

Figure S3: Morphology of the crystals of two polymorphic forms of HxF4

DATA	HxF4_Form I	HxF4_Form II
Formula	$C_{12}H_{12}NF$	$C_{12}H_{12}NF$
Formula Weight	189.23	189.23
Solvent	Methanol, RT	Hexane, LT (5°C)
Morphology	Plate	Block
CCDC No.	1827366	1827367
Crystal System, Space group	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1/n$
<i>a</i> (Å)	6.0226(4)	10.5411(11)

Table S6: Crystallographic and Refinement data of the two polymorphs

b (Å)	7.8459(6)	8.1081(8)
<i>c</i> (Å)	20.1968(14)	21.980(2)
α (⁰)/ β (⁰)/ γ (⁰)	90, 90, 90	90, 98.610(2), 90
Volume (Å ³) /Density (g/cm ³)	954.35(12), 1.317	1857.4(3), 1.353
Z/ Z'	4/1	8/2
F (000)/ μ (mm ⁻¹)	400/ 0.091	800/ 0.093
θ (min, max)	2.79, 30.57	2.29, 30.62
h _{min,max} , k _{min,max} , l _{min,max}	-8, 8; -11, 10; -28, 28	-13,15; -11, 11; -29, 31
No. of ref.	25718	24992
No. unique ref./ obs. ref.	2928/2429	5693/ 4862
No. of parameters	146	253
R_all, R_obs	0.0638, 0.0473	0.0545, 0.0457
wR ₂ _all, wR ₂ _obs	0.1156, 0.1088	0.1215, 0.1165
$\Delta \rho_{min,max}(e Å^{-3})$	-0.286, 0.282	-0.261, 0.448
G. o. F	1.029	1.045

Figure S4: Overlay of IR spectra of two forms of HxF_4 with that of a bulk powder.

Figure S5: Overlay of simulated powder XRD spectra of two forms of **HxF**₄ with the experimental powder pattern of bulk powder.

Figure S6: Overlay of the DSC traces of two forms of **HxF4**. Colour code: Green represents **form I** while blue is for **form II** (one heating and one cooling cycle are shown for each of the two forms).

Figure S7a: Molecular electrostatic potential maps of the crystal structures of the Hx series plotted on the Hirshfeld surface at ± 0.04 au contour level.

Figure S7b: Molecular electrostatic potential maps of the crystal structures of the Hp series plotted on the Hirshfeld surface at ± 0.04 au contour level.

Table S7: Lattice energies of all the crystal structures partitioned into different energy components

Molecule	E _{coul}	E _{pol}	E_{disp}	E _{rep}	E _{tot}
	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol
HxP	-32.4	-17.8	-116.4	70.4	-96.2
HxF2	-35.3	-23.0	-123.8	85.7	-96.4
HxF3	-38.5	-20.2	-133.0	91.9	-99.8
HxF4_Form I	-42.2	-21.9	-121.5	88.8	-97.2
HxF4_Form II	-39.6	-25.9	-130.2	93.0	-102.6
HxCl2	-32.3	-22.4	-145.4	97.1	-103.0
HxCl3	-47.0	-26.3	-145.3	103.7	-115.2
HxCl4	-41.2	-23.5	-151.8	100.9	-115.6
HxBr3	-46.8	-24.4	-145.1	102.9	-113.4
HxBr4	-39.9	-22.0	-149.0	98.8	-112.0
HpF2	-37.8	-22.2	-136.8	94.3	-102.4
HpF4	-40.0	-22.2	-131.3	91.6	-101.9
HpC12	-38.6	-22.8	-162.3	108.4	-115.4
HpC13	-41.5	-28.5	-167.5	109.9	-127.7
HpCl4	-45.9	-25.1	-154.7	106.8	-118.9
HpBr2	-39.1	-20.9	-157.3	108.2	-109.1
HpBr3	-48.7	-24.3	-156.6	106.3	-123.3
HpBr4	-44.2	-23.3	-154.4	102.8	-119.2

Table S8: List of intermolecular interactions present in reported structures along with

 geometrical parameters and interaction energies.

Motif	Symmetry	Centroid	E _{coul}	E_{pol}	Edisp	E _{rep}	E _{tot}	Intermolecular	Geometry		
		distance	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol	Interactions	Å/°/°		
	HxP										
Ι	0.5+x,-0.5-y,1-z	5.215	-16.4	-10.3	-37.0	28.2	-35.4	N1-H1····C2(π)	2.73/171		
								$C2(sp^2)$ -H2···C8(π)	2.84/161		
II	0.5+x,0.5-y,1-z	5.161	-6.1	-3.6	-30.5	19.3	-20.9	$C12(sp^3)$ -H12B····C6(π)	2.89/154		
								$C5(sp^2)$ -H5····C7(π)	3.05/153		
III	1+x,y,z	6.107	-5.5	-2.2	-18.2	10.2	-15.7	Molecular stacking			
IV	2-x,-0.5+y,0.5-z	9.280	-0.9	-0.4	-8.6	3.7	-6.3	С9-Н9А…Н11В-С11А	2.62/136/122		
V	2.5-x,-y,-0.5+z	10.151	-1.6	-0.6	-7.7	4.1	-5.8	C3-H3···H10B-C10A	2.76/124/135		
VI	1.5-x,-y,-0.5+z	10.238	-1.4	-0.6	-8.6	4.9	-5.7	C4-H4···H10B-C10A	2.53/150/110		
	HxF2										
Ι	x,-y,0.5+z	5.454	-18.4	-12.5	-31.4	27.4	-34.9	N1-H1····C4(π)	2.50/164		
								$C9(sp^3)$ -H9B····C7(π)	3.07/134		

II	1.5-x,0.5-y,1-z	4.039	-14.5	-8.9	-56.2	47.9	-31.8	C10(sp^3)-H10A····C3(π)	2.75/166
III	1.5-x,-0.5+y,1.5-	5.969	-2.3	-2.2	-19.7	11.2	-13.0	C5-H5…N1	2.82/151
	Z							C12-H12B…F1	2.71/120
IV	1.5-x,0.5-y,2-z	7.642	-2.6	-1.0	-13.5	6.6	-10.6	Molecular stacking	
V	1-x,-y,1-z	9.258	-2.9	-1.8	-17.4	12.6	-9.4	H10B····H11B	2.46/147/132
VI	2-x,y,1.5-z	9.116	-3.3	-1.5	-11.4	8.8	-7.3	C3-H3…F1	2.66/149
VII	1-x,y,1.5-z	8.883	-1.7	-0.8	-10.7	6.4	-6.8	C12-H12B····H11A-C11	2.63/143/127
VIII	-0.5+x,0.5-y,-	10.342	-1.2	-0.7	-8.3	4.4	-5.8	C11-H11A…H4-C4	2.504/142/134
	0.5+z								
					ŀ	IxF3			
Ι	-0.5+x,-0.5-y,1-z	4.816	-17.6	-10.2	-40.9	32.4	-36.2	N1-H1····C2(π)	2.79/159
								$C2(sp^2)$ -H2···C8(π)	2.88/154
								C10-H10A…F1	2.84/164
								C9-H9B…F1	2.88/153
II	0.5+x,0.5-y,1-z	4.948	-11.0	-5.3	-38.8	30.9	-24.3	С5-Н5…С7(π)	2.98/143
								$C12(sp^3)$ -H12B····C5(π)	2.97/146
III	1+x,y,z	6.194	-5.1	-3.2	-20.6	12.3	-16.6	C12-H12A…N1	2.94/137
								Molecular stacking	
IV	1.5-x,-y,0.5+z	10.421	-3.0	-1.3	-9.1	6.8	-6.6	C11-H11B…F1	2.76/154
V	2-x,0.5+y,1.5-z	10.070	-1.2	-0.8	-11.1	6.6	-6.5	С9-Н9В…Н11В-С11	2.63/138/122
VI	2.5-x,-y,0.5+z	10.440	-2.6	-0.8	-5.8	3.0	-6.3	C10-H10BF1	2.71/131
								C9-H9A····F1	2.83/112
			•		HxF4	_Form I	•		
Ι	0.5+x,0.5-y,1-z	5.031	-19.3	-12.9	-41.8	37.9	-36.1	N1-H1···C6(π)	2.65/173
								$C6(sp^2)$ -H6····C7(π)	2.71/159
								C6-H6…N1	2.93/160
II	-0.5+x,-0.5-y,1-z	4.984	-10.9	-4.3	-31.1	23.8	-22.5	C11-H11B…F1	2.46/165
								$C3(sp^2)$ -H3····C8(π)	2.97/152
								$C9(sp^3)$ -H9A····C6(π)	2.96/163
III	1+x,y,z	6.023	-5.6	-2.9	-20.9	14.1	-15.2	C9-H9B…N1	2.90/156
								Molecular stacking	
IV	2-x,-0.5+y,0.5-z	10.111	-0.4	-0.4	-8.2	2.8	-6.1	C10A-H10B····H12A-	2.69/132/137
								C12	
V	1.5-x,-y,0.5+z	10.444	-3.4	-1.2	-7.9	6.3	-6.1	C5-H5…H11A-C11	2.40/132/121
VI	2.5-x,-y,-0.5+z	10.643	-2.3	-0.9	-5.9	3.5	-5.7	C11A-H11A…F1	2.70/128
				Hx	F4_Form	II			
Ι	x,y,z	5.197	-21.6	-15.3	-40.4	39.2	-38.0	N1-H1····C15(π)	2.52/171
		12						$C6(sp^2)$ -H6····C20(π)	2.77/157
II	x,1+y,z	5.278	-18.3	-12.6	-34.2	29.9	-35.2	N2-H2···C3(π)	2.53/177

		12						C18(sp^2)-H18····C8(π)	2.95/147
III	1-x,-y,-z	3.711	-11.4	-8.8	-59.4	46.8	-32.7	ππ	
		22						$C(sp^3)$ 21-H21A····C18(π)	2.87/143
								C24-H24BF2	2.88/121
IV	1.5-x,-0.5+y,0.5-	4.929	-14.7	-6.4	-40.1	34.5	-26.7	$C3(sp^2)$ -H3····C7(π)	2.75/168
	Z	11						C10-H10B…F1	2.61/147
								C12-H12B…F1	2.67/141
V	1-x,1-y,-z	6.127	-5.2	-2.0	-16.6	8.1	-15.8	C21-H21BF2	2.64/143
		22						Molecular stacking	
VI	1-x,1-y,-z	5.681	-2.4	-3.4	-25.6	16.2	-15.2	$C15(sp^2)-H15\cdots C1(\pi)$	3.01/159
		12							
VII	1.5-x,0.5+y,0.5-z	6.088	-2.1	-1.4	-15.5	4.7	-14.2	С9-Н9А…N2	3.05/141
		12							
VIII	0.5-x,0.5+y,0.5-z	9.600	-3.4	-1.5	-9.9	5.9	-8.9	C24-H24A…F1	2.64/130
		12						C22-H22BF1	2.87/122
IX	-1+x,-1+y,z	10.137	-1.1	-0.7	-10.9	6.6	-6.2	C11-H11B····H23B-C23	2.66/137/105
		21							
X	-1+x,y,z	10.541	-1.1	-0.8	-8.2	4.4	-5.7	C5-H5····H11A-C11	2.59/135/127
		11							
					H	xCL2			
Ι	1-x,-y,-z	4.106	-7.6	-7.8	-67.6	50.8	-32.2	$\pi \cdots \pi$ stacking	
II	-0.5+x,0.5-y,-z	5.893	-12.4	-8.6	-31.6	25.4	-27.1	N1-H1···C5(π)	2.66/157
								C12-H12B…Cl1	2.79/142
III	0.5-x,-0.5+y,z	5.800	-7.3	-4.7	-33.9	25.9	-20.0	$C4(sp^2)$ -H4····C2(π)	2.73/148
IV	1-x,1-y,-z	6.192	-7.1	-2.1	-17.2	7.8	-18.7	C9-H9A···Cl1	3.06/143
								Molecular stacking	
V	x,0.5-y,0.5+z	10.591	-3.8	-1.6	-11.1	8.4	-8.1	C10A-H10B····Cl1	2.89/135
VI	1-x,-0.5+y,0.5-z	9.712	-0.9	-0.9	-11.4	6.0	-7.3	C10A-H10B…H12A-	2.48/150/155
								C12	
					H	xCL3			
Ι	-x,-0.5+y,1-z	4.831	-26.2	-16.0	-45.6	41.1	-46.6	N1-H1···C4(π)	2.58/160
								$C2(sp^2)$ -H2···C7(π)	2.88/151
								C11A-H11A…Cl1	2.93/175
								C9-H9A…Cl1	2.86/169
II	1-x,-0.5+y,1-z	5.117	-12.5	-6.5	-42.1	35.6	-25.6	$C(sp^3)$ 12-H12B····C3(π)	2.70/137
								$C5(sp^2)$ -H5····C1(π)	2.97/162
								C5-H5…N1	2.86/165
III	1 + x, y, z	5.713	-4.1	-2.8	-23.1	11.0	-18.9	C12-H12A····N1	2.79/158
								Molecular stacking	

IV	x,y,-1+z	10.878	-3.3	-1.1	-10.2	5.7	-8.8	C9-H9BCl1	3.04/126
V	1+x,y,1+z	11.682	-2.7	-1.0	-9.2	6.2	-6.7	C11A-H11B····Cl1	3.20/125
VI	1-x,-0.5+y,2-z	11.414	-0.5	-0.4	-7.7	4.0	-4.5	C10A-H10A····H11A-	2.66/120/116
								C11A	
					H	xCL4			
Ι	0.5-x,0.5+y,0.5-z	4.968	-18.3	-12.5	-47.2	38.6	-39.4	N1-H1···C2(π)	2.67/163
								$C2(sp^2)$ -H2···C8(π)	2.89/157
								$C9(sp^3)$ -H9B····C3(π)	2.88/144
II	0.5-x,0.5-y,-z	4.650	-12.3	-5.7	-52.3	33.9	-36.5	C11A(sp^3)-H11A····C6(π)	2.99/141
III	0.5-x,-0.5-y,-z	6.384	-10.2	-5.9	-33.3	29.6	-19.8	$C11A(sp^3)$ -H11B····Cl1	3.15/139
IV	x,1+y,z	6.087	-4.1	-3.6	-24.7	13.1	-19.3	C12-H12A…N1	2.97/154
								Molecular stacking	
V	-0.5+x,0.5-y,-	10.077	-6.6	-2.2	-15.9	13.3	-11.3	C9-H9B…Cl1	2.98/113
	0.5+z								
VI	1-x,-y,1-z	10.381	-1.1	-1.1	-9.0	3.2	-8.0	C3-H3…C11	3.27/151
					Н	xBr3			
Ι	1-x,0.5+y,0.5-z	5.085	-21.3	-13.6	-38.4	31.6	-41.7	N1-H1···C5(π)	2.51/172
								$C2(sp^2)$ -H2····C7(π)	3.0/150
								C10-H10A…Br1	3.17/171
II	0.5+x,y,0.5-z	5.221	-12.2	-4.4	-36.7	21.7	-31.6	stacking	
III	0.5-x,0.5+y,z	5.191	-7.8	-5.9	-40.5	32.9	-21.3	$C5(sp^2)$ -H5····C1(π)	2.66/156
IV	x,0.5-y,-0.5+z	11.751	-2.9	-0.7	-8.3	5.8	-6.1	C11-H11B····Br1	3.27/130
V	0.5-x,-y,-0.5+z	11.948	-1.1	-0.2	-3.8	0.9	-4.2	C10-H10B-···H10B-C10	2.31/126
					Н	xBr4			
Ι	0.5-x,-0.5+y,1.5-	5.231	-18.1	-12.0	-47.2	37.8	-39.5	N1-H1····C2(π)	2.70/163
	Z							$C2(sp^2)$ -H2···C8(π)	2.91/157
								$C9(sp^3)$ -H9B····C3(π)	2.89/146
II	0.5-x,1.5-y,1-z	5.527	-12.6	-5.8	-52.7	34.0	-37.1	$C11A(sp^3)$ -H11A····C1(π)	2.97/139
III	0.5-x,0.5-y,1-z	6.464	-10.6	-5.2	-32.9	29.4	-19.3	C11A-H11B····Br1	3.18/139
IV	x,-1+y,z	6.168	-3.5	-3.2	-23.7	12.1	-18.4	Molecular stacking	
V	-0.5+x,1.5-y,-	10.407	-6.4	-1.7	-14.4	12.6	-10.0	C9-H9B····Br1	3.11/112
	0.5+z								
VI	1-x,1-y,2-z	9.236	-0.6	-0.8	-8.0	3.0	-6.4	C3-H3···Br1	3.41/152
					H	IpF2			
Ι	0.5-x,0.5+y,z	5.274	-18.4	-11.7	-39.6	35.2	-34.6	N1-H1····C4(π)	2.72/164
								$C9(sp^3)$ -H9B····C7(π)	2.81/144
II	-x,1-y,1-z	4.634	-18.7	-9.6	-56.6	51.5	-33.4	$\overline{\mathrm{C9}(sp^3)}$ -H9A····C5(π)	2.94/168
								$C13(sp^3)$ -H13B····C8(π)	2.66/146
								C13-H13B…N1	2.72/168

III	-x,-y,1-z	6.859	-5.7	-1.9	-23.3	12.5	-18.4	Molecular stacking	
IV	-0.5+x,0.5-y,1-z	6.187	-2.2	-1.9	-21.7	9.3	-16.4	C12-H12A…F1	2.63/144
V	0.5-x,0.5-y,0.5+z	9.826	-1.8	-1.0	-9.9	5.2	-7.4	C3-H3····H10B-C10	2.54/158/111
VI	x,1-y,0.5+z	9.870	-1.7	-0.5	-6.5	2.3	-6.4	C10-H10A…F1	2.70/146
					E	IpF4			I
Ι	2-x,-y,1-z	5.461	-20.6	-13.8	-46.1	42.9	-37.6	N2-H2···C5(π)	2.55/166
		12						$C(sp^3)$ 22-H22A····C7(π)	2.72/153
								C22-H22BF1	2.73/152
								C26-H26AF1	2.91/147
II	x,y,-1+z	5.196	-18.9	-12.3	-43.7	37.7	-37.2	N1-H1····C15(π)	2.62/170
		12						$C9(sp^3)$ -H9A····C16(π)	2.88/152
								$C2(sp^2)$ -H2A····C21(π)	2.97/160
III	x,y,z	5.093	-12.8	-5.5	-37.3	29.3	-26.3	$C5(sp^2)$ -H5····C20(π)	2.80/147
		12						C13(sp^3)-H13B····C18(π)	2.85/138
IV	2-x,-y,1-z	6.380	-7.1	-3.0	-22.5	9.1	-23.5	Molecular stacking	
		11							
V	1-x,-y,1-z	5.347	-6.3	-4.5	-37.8	27.0	-21.6	$C18(sp^2)-H18\cdots C3(\pi)$	2.99/162
		12						$C26(sp^3)-H26B\cdots C1(\pi)$	2.96/133
VI	2-x,-y,2-z	7.602	-7.2	-1.3	-10.1	2.1	-16.5	Molecular stacking	
		22							
VII	1-x,-y,-z	6.132	-5.9	-2.7	-22.9	17.2	-14.2	Molecular stacking	
		11							
VIII	1-x,-y,1-z	6.821	-1.5	-1.1	-10.0	1.8	-10.8	Molecular stacking	
		22							
IX	1.5-x,-0.5+y,1.5-	11.015	-4.2	-1.4	-9.2	6.3	-8.4	C10-H10B…F1	2.61/159
	Z	22							
X	1.5-x,-0.5+y,0.5-	11.008	-4.3	-1.7	-9.8	8.1	-7.7	C23-H23B…F2	2.76/152
	Z	11							
					H	pCL2			
Ι	2-x,-y,2-z	5.377	-18.1	-8.9	-67.5	56.5	-38.0	C12(sp^3)-H12B····C8(π)	2.82/161
								$C10(sp^3)$ -H10A····C5(π)	2.97/121
								C12-H12BN1	2.89/133
II	x,0.5-y,-0.5+z	5.549	-17.3	-10.6	-42.3	35.4	-34.8	N1-H1····C4(π)	2.64/164
								$C9(sp^3)-H9B\cdots C6(\pi)$	2.73/152
III	2-x,-0.5+y,1.5-z	6.335	-5.1	-3.6	-30.9	20.2	-19.4	C12-H12A…Cl1	2.92/139
IV	-1+x,y,z	8.688	-3.6	-1.6	-15.7	8.5	-12.4	C9-H9A…Cl1	3.06/163
V	2-x,-y,1-z	8.039	-1.8	-0.3	-9.7	1.8	-10.0	Molecular stacking	
VI	-1+x,0.5-y,0.5+z	10.376	-3.4	-1.6	-13.7	9.0	-9.7	C10-H10B····Cl1	2.97/140

	HPCL3										
Ι	1-x,0.5+y,1.5-z	5.030	-25.0	-14.6	-48.5	39.2	-48.9	N1-H1····C5(π)	2.67/167		
								C9-H9B…Cl1	3.00/126		
								$C2(sp^2)$ -H2···C7(π)	2.96/159		
II	1-x,-y,1-z	3.904	-13.4	-9.7	-71.2	53.3	-41.0	C13(sp^3)-H13B····C3(π)	2.89/139		
III	1-x,1-y,1-z	6.312	-7.6	-2.3	-27.7	15.7	-21.9	Molecular stacking			
IV	x,0.5-y,-0.5+z	5.834	-0.7	-3.2	-29.9	16.8	-17.0	C13-H13A…N1	2.97/140		
								$C5(sp^2)$ -H5····C2(π)	3.10/139		
V	1+x,0.5-y,0.5+z	11.689	-3.4	-1.2	-10.7	6.5	-8.7	C11-H11B····Cl1	3.16/129		
VI	2-x,-0.5+y,1.5-z	11.329	-1.4	-1.6	-12.1	9.4	-5.8	С9-Н9А…Н11В-С11	2.45/142/155		
								C10-H10A····H12B-C12	2.41/142/145		
			ı.		H	PCL4	I				
Ι	x,y,z	5.055	-19.5	-12.6	-51.2	40.1	-43.3	N1-H1····C15(π)	2.67/172		
		12						$C2(sp^2)$ -H2A····C21(π)	2.92/160		
								$C9(sp^3)$ -H9B····C16(π)	2.94/153		
II	1-x,-y,1-z	5.742	-24.5	-16.3	-49.8	51.7	-38.8	N2-H2···C5(π)	2.55/161		
		12						C22(sp^3)-H22B····C7(π)	2.69/153		
III	x,y,-1+z	5.091	-15.1	-6.5	-44.5	33.4	-32.7	C13(sp^3)-H13A····C18(π)	2.95/146		
		12						C22-H22A····Cl1	2.97/148		
								C26-H26B…Cl1	2.93/149		
IV	-x,-y,1-z	5.250	-6.6	-5.3	-46.0	31.6	-26.3	$C18(sp^2)-H18\cdots C3(\pi)$	3.07/166		
		12						C26(sp^3)-H26A····C1(π)	3.03/128		
								C25(sp^3)-H25B····C8(π)	3.10/151		
V	1-x,-y,2-z	6.817	-7.1	-2.9	-20.6	7.8	-22.8	Molecular stacking			
		22									
VI	-x,-y,1-z	6.092	-7.6	-3.4	-30.5	19.9	-21.6	Molecular stacking			
		22									
VII	-x,-y,-z	6.661	-5.9	-2.9	-25.2	14.5	-19.5	C12-H12Cl1	2.97/119		
		11						Molecular stacking			
VIII	1-x,-y,1-z	7.574	-7.6	-1.3	-10.3	2.6	-16.7	Molecular stacking			
		11									
IX	0.5-x,0.5+y,0.5-z	11.367	-4.7	-1.8	-11.1	7.9	-9.7	C10-H10B…Cl1	2.90/146		
		11									
Х	0.5-x,-0.5+y,1.5-	11.361	-3.9	-1.4	-10.8	6.5	-9.6	C23-23A…Cl2	2.91/151		
	Z	22									
					Н	PBr2					
Ι	1-x,-y,1-z	6.308	-17.9	-8.9	-68.5	56.5	-38.9	C12(sp^3)-H12B····C8(π)	2.81/161		
								$C10(sp^3)-H10B\cdots C5(\pi)$	2.98/121		
II	x,0.5-y,-0.5+z	5.487	-15.5	-9.3	-39.0	32.1	-31.7	N1-H1····C4(π)	2.68/164		

								$C9(sp^3)$ -H9B····C6(π)	2.76/151
III	1-x,-0.5+y,0.5-z	6.654	-5.7	-3.3	-30.9	21.1	-18.8	C12-H12A····Br1	3.05/137
								C13-H13A…Br1	3.24/114
IV	-1+x,y,z	8.786	-4.1	-1.5	-14.8	8.2	-12.1	C9-H9A…Br1	3.13/163
V	1+x,0.5-y,-0.5+z	10.395	-3.9	-1.4	-13.0	9.8	-8.4	C10-H10A…Br1	3.05/139
VI	1-x,-y,-z	8.815	-1.5	-0.2	-7.3	1.0	-8.1	Molecular stacking	
					Н	PBr3			
Ι	0.5-x,0.5-y,-	4.869	-24.3	-13.3	-47.3	38.6	-46.3	N1-H1····C5(π)	2.66/171
	0.5+z							C10-H10B····Br1	3.11/156
II	0.5-x,0.5+y,z	5.652	-10.1	-3.1	-27.8	13.5	-27.4	Molecular stacking	
III	x,-y,-0.5+z	5.102	-8.8	-6.6	-44.7	35.4	-24.7	$C5(sp^2)$ -H5····C1(π)	2.70/149
								C13(sp^3)-H13A····C8(π)	2.95/155
								C5-H5…N1	2.99/174
IV	1-x,y,1.5-z	12.507	-0.3	-0.8	-12.6	5.6	-8.1	C10-H10A-H10A-C10	2.53/136
V	1-x,-y,1-z	12.574	-2.5	-1.6	-14.2	11.1	-7.2	C11-H11A····H12A-C12	2.44/135/135
VI	-0.5+x,0.5-y,1-z	12.221	-4.4	-1.2	-9.4	8.0	-7.1	C11-H11B····Br1	3.12/135
					Н	PBr4			
Ι	1-x,1-y,1-z	6.063	-15.8	-6.9	-58.8	41.0	-40.5	C12(sp^3)-H12B····C7(π)	2.96/164
II	1-x,0.5+y,0.5-z	5.450	-14.8	-10.3	-40.9	30.9	-35.2	N1-H1···C2	2.73/158
								$C2(sp^2)$ -H2····C7(π)	2.891/129
III	x,1+y,z	6.206	-6.0	-4.2	-30.3	18.8	-21.7	Molecular stacking	
IV	1-x,-y,1-z	7.067	-6.5	-5.1	-22.2	19.3	-14.4	Molecular stacking	
V	-1+x,y,z	9.540	-4.3	-2.2	-15.0	9.1	-12.3	C11-H11B····Br1	3.18/158
								C13-H13B····Br1	3.24/158
VI	-1+x,1+y,z	11.381	-4.3	-1.0	-8.1	5.1	-8.3	C9-H9B···Br1	3.05/130

Table S9: Isostructural similarity between different structures of Hx and Hp series of molecules.

Molecule 1	Molecule 2	Isostructurality	X	d (Å)	delta [a] (⁰)	delta [p] (⁰)
HxP	HxF3	2D	11.0	0.11	4.3	10.0
HxP	HxF4_Form I	3D	4.5	0.23	1.9	3.9
HxP	HxCl3	1D	12.7	0.39	6.4	11.0
HxP	HxCl4	1D	9.8	0.05	3.7	9.1
HxP	HxBr4	1D	10.1	0.07	3.7	9.3
HxF2	HxBr3	1D	9.9	1.45	2.9	9.4
HxF3	HxF4_Form I	2D	11.4	0.14	4.6	10.4

HxF3	HxCl3	1D	12.1	0.48	6.5	10.2
HxF3	HxCl4	1D	4.5	0.07	1.8	4.1
HxF3	HxBr4	1D	4.1	0.03	1.7	3.7
HxF4_Form I	HxCl3	1D	11.9	0.31	5.6	10.5
HxF4_Form I	HxCl4	1D	10.7	0.05	4.4	9.7
HxF4_Form I	HxBr4	1D	10.9	0.09	4.4	10.0
HxF4_Form II	HxCl3	2D	11.0	0.44	4.6	9.8
HxF4_Form II	HxBr3	1D	6.9	0.18	3.1	6.1
HxCl3	HxCl4	1D	10.4	0.37	6.2	8.3
HxCl3	HxBr3	1D	10.9	0.05	4.8	9.7
HxCl3	HxBr4	1D	10.9	0.45	6.4	8.8
HxCl4	HxBr4	3D	1.2	0.14	0.6	1.0
HpF4	HpCl4	3D	4.0	0.16	1.6	3.6
HpCl2	HpBr2	3D	1.5	0.10	0.8	1.2
HpCl3	HpBr3	1D	4.8	0.07	1.9	4.3

Figure 8a: 2D isostructurality between HxP and HxF3

Figure 8b: 3D isostructurality between HxP and HxF4_Form I

Figure 8c: 1D isostructurality between HxP and HxCl3

Figure 8d: 1D isostructurality between HxP and HxCl4

Figure 8e: 1D isostructurality between HxP and HxBr4

Figure 8f: 1D isostructurality between HxF2 and HxBr3

Figure 8g: 2D isostructurality between HxF3 and HxF4_Form I

Figure 8h: 1D isostructurality between HxF3 and HxCl3

Figure 8i: 1D isostructurality between HxF3 and HxCl4

Figure 8j: 1D isostructurality between HxF3 and HxBr4

Figure 8k: 1D isostructurality between HxF4_Form I and HxCl3

Figure 81: 1D isostructurality between HxF4_Form I and HxCl4

Figure 8m: 1D isostructurality between HxF4_Form I and HxBr4

Figure 8n: 2D isostructurality between HxF4_Form II and HxCl3

Figure 80: 1D isostructurality between HxF4_Form II and HxBr3

Figure 8p: 1D isostructurality between HxCl3 and HxCl4

Figure 8q: 1D isostructurality between HxCl3 and HxBr3

Figure 8r: 1D isostructurality between HxCl3 and HxBr4

Figure 8s: 3D isostructurality between HxCl4 and HxBr4

Figure 8t: 3D isostructurality between HpF4 and HpCl4

Figure 8u: 3D isostructurality between HpCl2 and HpBr2

Figure 8v: 1D isostructurality between HpCl3 and HpBr3

Table S10: Topological parameter obtained at N-H...C(π) bond critical point in different molecules.

	R _{ij} (Å)	ρ (e/Å ³)	$\nabla^2 \rho$ (e/Å ⁵)	V / G
HxP	2.769	0.045	0.519	0.772
HxF2	2.578	0.065	0.784	0.745
HxF3	2.833	0.042	0.477	0.789
HxF4_I	2.812	0.051	0.629	0.764
HxF4_II_1	2.599	0.066	0.809	0.740
HxF4_II_2	2.562	0.062	0.724	0.754
HxCl2	2.733	0.048	0.509	0.761
HxCl3	2.904	0.061	0.728	0.739
HxCl4	2.717	0.050	0.592	0.768
HxBr3	2.598	0.064	0.752	0.745
HxBr4	2.751	0.048	0.558	0.773
HpF2	2.902	0.045	0.501	0.772

HpF4_1	2.839	0.055	0.651	0.759
HpF4_2	2.595	0.062	0.725	0.758
HpCl2	2.743	0.051	0.545	0.764
HpCl3	2.914	0.050	0.575	0.762
HpCl4_1	3.213	0.052	0.612	0.763
HpCl4_2	2.660	0.062	0.732	0.759
HpBr2	2.730	0.047	0.502	0.771
HpBr3	2.814	0.051	0.574	0.759
HpBr4	3.087	0.047	0.551	0.786