

STRUCTURAL SCIENCE CRYSTAL ENGINEERING MATERIALS

Volume 74 (2018)

Supporting information for article:

Control of crystal structure using temperature and time
Savannah C. Zacharias, Gaëlle Ramon and Susan A. Bourne

S1 Thermal analysis

Table S1: Theoretical and experimentally obtained mass losses of I, II, and III. The components are given in the order in which they are lost

	Component	Mass loss [\%] (calculated)	$\begin{aligned} & \text { Mass loss [\%] } \\ & \text { (observed) } \end{aligned}$
I	$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{1} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$		
	Acetonitrile	10.8	10.7 ± 0.3
	Water	4.7	3.8 ± 0.6
	Acetylacetonate	26.4	20.4 ± 0.4 partial
	2,6-pyridinedicarboxylic acid	43.6	23.4 ± 0.4 partial
	Fe (III)	14.4	
	FeO_{4}	31.6	
II	$\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)$		
	Acetylacetonate	31.3	32.7 ± 0.4
	2,6-pyridinedicarboxylic acid	51.6	30.9 ± 1.1 partial
	Fe (III)	17.3	
	FeO_{4}	37.5	
III	$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\right]_{4}$		
	Acetylacetonate	31.3	31.2 ± 2.4
	2,6-pyridinedicarboxylic acid	51.6	26.2 ± 1.2 partial
	Fe (III)	17.3	
	FeO_{4}	37.5	

Figure S1: Overlay of TGA and DSC traces of I. The sequential loss of acetonitrile, water, acetylacetonate, 2,6-pyridinedicarboxylic acid is shown.

Figure S2: The complex multistep loss of acetylacetnoate followed by the partial loss of 2,6pyridinedicarboxylic acid can be seen in the overlay of TGA and DSC traces of II.

Figure S3: Overlay of TGA and DSC traces of III showing the complex degradation of acetylacetonate followed by the partial loss of 2,6-pyridinedicarboxylic acid.

S2 X-ray diffraction (XRD)

Powder X-diffraction patterns of I, II, and III.

Figure S4: PXRD trace of I and starting materials. There is partial agreement between the experimental and calculated traces, indicating that the bulk material may be a mixture of compounds.

Figure S5: PXRD trace of II and starting materials. A new phase has formed and there is good agreement between the experimental and calculated patterns.

Figure S6: PXRD trace of III and starting materials. A new phase is present but some discrepancy between the experimental and calculated patterns may indicate that the phase is not pure.

S2.1 Crystal structures of I, ZIMBIG, II, and III

S2.2 I

Table S2: Bond lengths and angles of atoms coordinated to the Fe (III) metal centre of I

Bond	Length $[\AA]$	Bonds	Angle $\left[{ }^{\circ}\right]$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.033(1)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 6$	$88.94(5)$
$\mathrm{Fe} 1-\mathrm{O} 4$	$2.034(1)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 7$	$94.09(5)$
$\mathrm{Fe} 1-\mathrm{O} 5$	$1.929(1)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 5$	$104.07(5)$
$\mathrm{Fe} 1-\mathrm{O} 6$	$1.998(1)$	$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{O} 1$	$104.56(5)$
$\mathrm{Fe} 1-\mathrm{O} 7$	$2.032(1)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 1$	$75.51(5)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.068(1)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{N} 1$	$75.95(5)$

S2.3 ZIMBIG

Figure S7: Asymmetric unit of ZIMBIG showing coordination to Fe(III) metal centre and the disordered ethanol molecule (Lainé et al., 1995b).

Table S3: Summary of bond lengths and angles of atoms coordinated to the Fe(III) metal centre of ZIMBIG

Bond	Length $[\AA]$	Bonds	Angle $\left[{ }^{\circ}\right]$
$\mathrm{Fe} 1-\mathrm{O} 1$	$2.002(2)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 7$	$92.16(9)$
$\mathrm{Fe} 1-\mathrm{O} 2$	$2.046(2)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 1$	$92.80(8)$
$\mathrm{Fe} 1-\mathrm{O} 4$	$2.035(2)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 6$	$111.64(9)$
$\mathrm{Fe} 1-\mathrm{O} 6$	$1.936(3)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{O} 2$	$97.26(9)$
$\mathrm{Fe} 1-\mathrm{O} 7$	$1.977(2)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 2$	$75.42(7)$
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.069(2)$	$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{N} 1$	$74.69(7)$

Figure S8: The root mean square deviation fit of the asymmetric units of ZIMBIG (Lainé et al., 1995) (pink) and I (purple). Hydrogen atoms and solvent molecules were omitted for clarity. RMSD fit between the two molecules is $0.093 \AA$.

Figure S9: Packing of ZIMBIG viewed down [100] on the left and [010] on the right (Lainé et al., 1995b). Hydrogen atoms and ethanol solvent molecule are omitted for clarity. The disordered ethanol molecule can be found in a channel propagating along [010]. This packing arrangement is different to that seen for \mathbf{I} (Fig. ??).

S2.4 II and III

Table S4: Coordination geometry of the ligands to the metal centre of II

Bond	Length $[\AA]$	Bond	Angle $\left[{ }^{\circ}\right]$
Fe1-O3	$1.9891(2)$	O3-Fe1-N1	76.52
$\mathrm{Fe} 1-\mathrm{O} 2$	$2.0864(2)$	$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{N} 1$	74.60
$\mathrm{Fe} 1-\mathrm{O} 5$	$1.9406(2)$	$\mathrm{O} 6-\mathrm{Fe} 1-\mathrm{N} 1$	88.87
$\mathrm{Fe} 1-\mathrm{O} 6$	$1.9817(2)$	$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{O} 6$	88.06
$\mathrm{Fe} 1-\mathrm{N} 1$	$2.0764(2)$	$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{a}$	86.60
$\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{a}$	$2.0409(2)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 1 \mathrm{a}$	97.70

Table S5: Coordination geometry, bond lengths, of the ligands to the metal centre of III

Bond	Length $[\AA]$						
Fe1A-O1D	$2.0286(1)$	Fe1B-O1A	$2.0603(1)$	Fe1C-O1B	$2.0477(1)$	Fe1D-O1C	$2.0596(1)$
Fe1A-O2A	$2.0959(1)$	Fe1B-O2B	$2.0728(1)$	Fe1C-O2C	$2.0936(1)$	Fe1D-O2D	$2.0988(1)$
Fe1A-O3A	$1.9776(1)$	Fe1B-O3B	$2.0089(1)$	Fe1C-O3C	$1.9870(1)$	Fe1D-O3D	$2.0026(1)$
Fe1A-O5A	$1.9925(1)$	Fe1B-O5B	$1.9927(1)$	Fe1C-O5C	$1.9906(1)$	Fe1D-O5D	$1.9873(1)$
Fe1A-O6A	$1.9569(1)$	Fe1B-O6B	$1.9295(1)$	Fe1C-O6C	$1.9577(1)$	Fe1D-O6D	$1.9445(1)$
Fe1A-N1A	$2.0903(1)$	Fe1B-N1B	$2.0814(1)$	Fe1C-N1C	$2.0983(1)$	Fe1D-N1D	$2.0762(1)$

Table S6: Coordination geometry, bond angles, of the ligands to the metal centre of III

Bond	Angle $\left[{ }^{\circ}\right]$	Bond	Angle $\left[{ }^{\circ}\right]$
O2A-Fe1A-N1A	$73.72(1)$	O2B-Fe1B-N1B	$74.97(1)$
O1D-Fe1A-N1A	$96.69(1)$	O1A-Fe1B-N1B	$96.81(1)$
O5A-Fe1A-O6A	$87.56(1)$	O5B-Fe1B-O6B	$88.27(1)$
O2A-Fe1A-O5A	$86.60(1)$	O2B-Fe1B-O5B	$91.72(1)$
O3A-Fe1A-N1A	$76.29(1)$	O3B-Fe1B-N1B	$76.43(1)$
O1D-Fe1A-O3A	$95.62(1)$	O1A-Fe1B-O3B	$91.83(1)$
O2C-Fe1C-N1C	$73.71(1)$	O2D-Fe1D-N1D	$74.78(1)$
O1B-Fe1C-N1C	$100.78(1)$	O1C-Fe1D-N1D	$98.18(1)$
O5C-Fe1C-O6C	$87.49(1)$	O5D-Fe1D-O6D	$87.24(1)$
O2C-Fe1C-O5C	$88.68(1)$	O2D-Fe1D-O5D	$89.72(1)$
O3C-Fe1C-N1C	$76.34(1)$	O3D-Fe1D-N1D	$76.49(1)$
O1B-Fe1C-O3C	$92.76(1)$	O1C-Fe1D-O3D	$92.27(1)$

Figure S10: Packing of II from left to right viewed down [100] and [001]. The hydrogen bond which links each tetramer to four others stabilises this formation. An undulating pattern can be seen along the $a-b$ plane.

Figure S11: Packing of the tetramers of III with hydrogen bond stabilised layers viewed down [100]. Hydrogen atoms have been removed for clarity.

S3 Fourier transform-infrared spectroscopy

Figure S12: FT-IR spectrum of I grown at room temperature.

Figure S13: FT-IR spectrum of II grown at room temperature.

Figure S14: FT-IR spectrum of III grown at room temperature.

