

Volume 74 (2018)

Supporting information for article:

Using structural mimics for accessing and exploring structural landscapes of poorly soluble molecular solids

Manomi Dharshika Perera, Abhijeet S. Sinha and Christer B. Aakeröy

Content

1.1 PXRD data	1-3
1.2 Crystallographic data	3-5
1.3 Crystallography experimental details	5-6
1.4 References	6

1.1 PXRD data

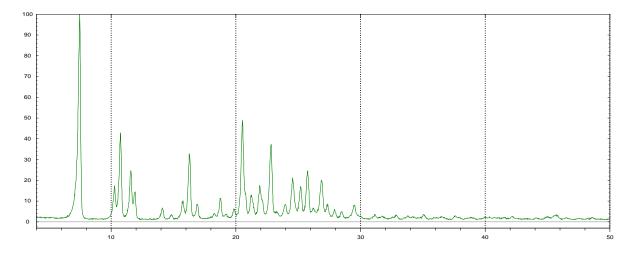


Figure S1 Powder pattern of (EM)2:dodecanedioic co-crystal obtained through solvothermal method.

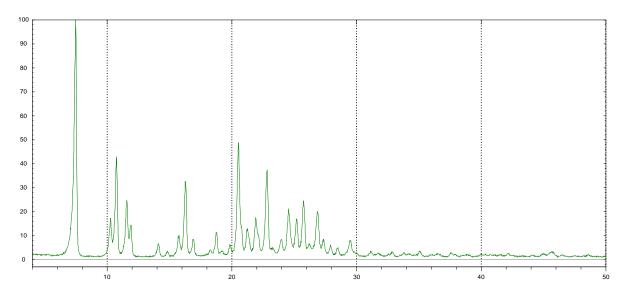


Figure S2 Stimulated powder pattern of (EM)2:dodecanedioic co-crystal analysis

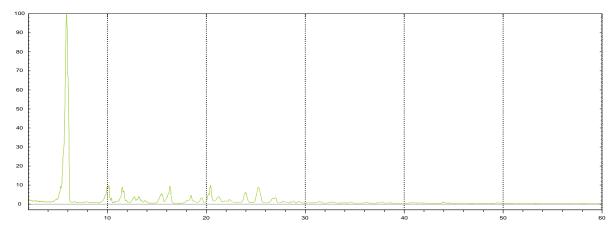


Figure S3 Powder patter of (EM)2:suberic acid co-crystal obtained through solvothermal method

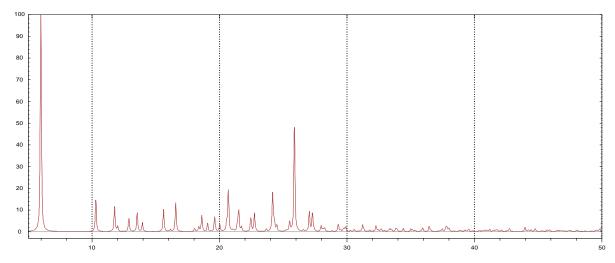


Figure S4 Stimulated powder pattern of (EM)2:suberic acid co-crystal

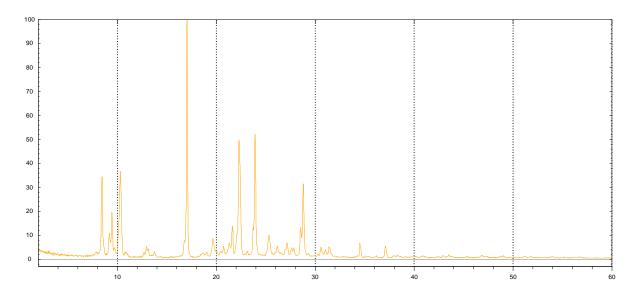


Figure S5 Powder pattern of (EM)2: succinic co-crystal obtained through solvothermal method

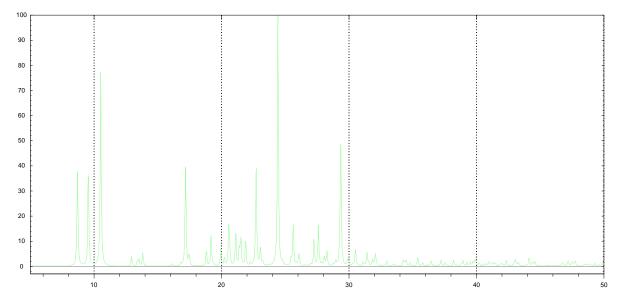


Figure S6 Stimulated powder pattern of (EM)2:succinic co-crystal

1.2 Crystallographic data

Table S1	Crystallographic data of the co-crystals	
----------	--	--

Code	EMH ⁺ :Cl ⁻	(EMH ⁺) ₂ :ADP ⁻ :ADP.MeOH	(EM ₂):Succinic acid	(EM ₂):Suberic acid	(EM ₂):Dodecanedioicacid
Formula moiety	C ₁₈ H ₁₆ N ₃ O ₂ , Cl	$\begin{array}{c} (C_{18}H_{16}N_{3}O_{2})_{2},\\ C_{6}H_{8}O_{4},\\ C_{6}H_{10}O_{4},CH_{4}O\end{array}$	$\begin{array}{c} C_{18}H_{15}N_{3}O_{2},\\ 0.5(C_{4}H_{6}O_{4})\end{array}$	$\begin{array}{c} C_{18}H_{15}N_{3}O_{2},\\ 0.5(C_{8}H_{14}O_{4})\end{array}$	C ₁₈ H ₁₅ N ₃ O ₂ , 0.5(C ₁₂ H ₂₂ O ₄)
Empirical formula	C ₁₈ H ₁₆ ClN ₃ O ₂	$C_{49}H_{54}N_6O_{13}$	$C_{20}H_{18}N_3O_4$	C ₂₂ H ₂₂ N ₃ O ₄	C ₂₄ H ₂₆ N ₃ O ₄
Molecular weight	341.79	934.98	364.37	392.42	420.48

Color, Habit	Colorless,	Colorless,	Colorless,	Colorless,	Colorless, Blocks
	Blocks	Blocks	Blocks	Blocks	
Crystal system	Orthorhombic	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group, Z	Pbca, 8	<i>P</i> ī , 2	<i>P</i> 2(1)/ <i>c</i> , 4	<i>P</i> ī , 2	<i>P</i> 2(1)/ <i>c</i> , 4
<i>a</i> , Å	9.507(2)	9.304(4)	10.145(4)	7.889(4)	7.5496(16)
<i>b</i> , Å	7.9958(17)	15.756(8)	18.472(7)	9.157(4)	16.434(4)
<i>c</i> , Å	43.262(9)	15.829(7)	9.421(3)	14.832(7)	17.094(4)
α, °	90	94.54(2)	90	86.153(19)	90
β, °	90	93.95(2)	91.423(19)	83.38(2)	93.547(12)
γ, °	90	104.56(2)	90	69.517(18)	90
Volume, Å ³	3288.6(12)	2229.4(18)	1764.9(11)	996.6(8)	2116.8(8)
Density, g/cm ³	1.381	1.393	1.371	1.308	1.319
<i>T</i> , °K	130(2)	130(2)	130(2)	130(2)	130(2)
Crystal size, min x mid x max	0.152 x 0.301 x 0.487	0.172 x 0.298 x 0.440	0.157 x 0.242 x 0.274	0.122 x 0.196 x 0.278	0.084 x 0.168 x 0.262
X-ray wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073
μ , mm ⁻¹	0.248	0.102	0.097	0.091	0.091
Trans min / max	0.89 / 0.96	0.96 / 0.98	0.97 / 0.98	0.97 / 0.99	0.98 / 0.99
$ heta_{min},$ °	0.94	1.30	2.01	1.38	1.72
$\theta_{max}, {}^{o}$	26.79	26.60	26.05	25.60	25.20
Reflections					
collected	44653	35562	28660	15029	36479
independent	3440	8806	3419	3506	3787
observed	2741	4654	2215	2377	2480
R _{int}	0.0531	0.1147	0.0942	0.0610	0.0966
Threshold expression	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$	$> 2\sigma(I)$	> 2 $\sigma(I)$
No. parameters	227	646	255	272	291

No. restraints	0	5	1	1	1
R ₁ (observed)	0.0384	0.0645	0.0474	0.0490	0.0571
wR_2 (all)	0.1060	0.1981	0.1311	0.1510	0.1577
Goodness of fit (all)	1.123	1.022	1.029	1.069	1.034
$ ho_{ m max}, ho_{ m min}, ho_{ m min}, ho_{ m min}$	0.286, -0.395	0.478, -0.380	0.261, -0.227	0.327, -0.332	0.357, -0.233
Completeness to 2θ limit	0.982	0.943	0.979	0.936	0.994

1.3 Crystallography Experimental Details

All datasets were collected on a Bruker Kappa APEX II system using MoKα radiation. Data were collected using APEX2 software.ⁱ Initial cell constants were found by small widely separated "matrix" runs. Data collection strategies were determined using COSMO.ⁱⁱ Scan speed and scan widths were chosen based on scattering power and peak rocking curves. All datasets were collected at -143 °C using an Oxford Cryostream low-temperature device.

Unit cell constants and orientation matrix were improved by least-squares refinement of reflections thresholded from the entire dataset. Integration was performed with SAINT,ⁱⁱⁱ using this improved unit cell as a starting point. Precise unit cell constants were calculated in SAINT from the final merged dataset. Lorenz and polarization corrections were applied. Multi-scan absorption corrections were performed with SADABS.^{iv}

Data were reduced with SHELXTL.^v The structures were solved in all cases by direct methods without incident. Except as noted, hydrogen atoms were located in idealized positions and were treated with a riding model. All non-hydrogen atoms were assigned anisotropic thermal parameters. Refinements continued to convergence, using the recommended weighting schemes.

EMH⁺**:Cl**⁻ – Coordinates of the quinazoline proton H1 and an amine proton H11 were allowed to refine.

(EMH⁺)₂:ADP:ADP.MeOH – Coordinates of the quinazoline protons H1 and H24; amine protons H11 and H34; carboxylic acid protons H57 and H62; and methanol proton H68 were allowed to refine.

(EM₂):Succinic acid – Coordinates of an amine proton H11 and the carboxylic acid proton H25 were allowed to refine.

(EM₂):Suberic acid – Coordinates of an amine proton H11 and the carboxylic acid proton H24 were allowed to refine.

(EM₂):Dodecanedioic acid – Coordinates of an amine proton H11 and the carboxylic acid proton H25 were allowed to refine.

1.4 References

- ⁱ APEX2 v2013.10-0, © 2013, Bruker Analytical X-ray Systems, Madison, WI.
- ⁱⁱ COSMO v1.61, © 1999 2009, Bruker Analytical X-ray Systems, Madison, WI.
- iii SAINT v8.34a, © 1997 2013, Bruker Analytical X-ray Systems, Madison, WI.
- ^{iv} SADABS v2012/1, © 2012, Bruker Analytical X-ray Systems, Madison, WI.
- ^v SHELXTL v2008/4, © 2008, Bruker Analytical X-ray Systems, Madison, WI.