

Volume 73 (2017)

Supporting information for article:

Supramolecular Heterosynthon Assemblies of *ortho*-Phenylenediamine with Substituted Aromatic Carboxylic Acids

Risha Mishra and Raghavaiah Pallepogu

S1. Synthetic details of the salts

S1.1. Synthesis of OPDP:

OPDP was synthesised by taking an equimolar ratio of OPDA (540 mg) in 10 mL of acetonitrile and phthalic acid (840 mg) in 10 mL of methanol and was dissolved separately by small heating till a clear solution was obtained. The reaction mixture was heated further for half an hour at around 40°C and was allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Pale-yellow coloured block shaped crystals of OPDP, suitable for single crystal X-ray structure determinations were obtained after 1 week.

Salt OPDP was also prepared by liquid assisted grinding (LAG) of *o*-phenylenediamine (OPDA) (54 mg, 0.5 mmol) and phthalic acid (84 mg, 0.5 mmol) in 1:1 molar ratio with 3 drops of acetonitrile. The mixture was ground for 20 minutes using mortar and pestle and the powdered product was collected for PXRD studies.

S1.2. Synthesis of OPDS:

OPDS was synthesised by taking an equimolar ratio of OPDA (540 mg) in 10 mL of acetonitrile and salicylic acid (840 mg) in 10 mL of methanol and was dissolved separately by small heating till a clear solution was obtained. The reaction mixture was heated further for half an hour at around 40°C and was allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Light brown coloured needle shaped crystals of OPDS, suitable for single crystal X-ray structure determinations were obtained after 1 week.

Salt OPDS was also prepared by liquid assisted grinding (LAG) of *o*-phenylenediamine (OPDA) (54 mg, 0.5 mmol) and phthalic acid (84 mg, 0.5 mmol) in 1:1 molar ratio with 3 drops of acetonitrile. The mixture was ground for 20 minutes using mortar and pestle and the powdered product was collected for PXRD studies.

S1.3. Synthesis of OPDPHB:

OPDPHB was synthesised by taking an equimolar ratio of OPDA (540 mg) in 10 mL of acetonitrile and phthalic acid (690 mg) in 10 mL of methanol and was dissolved separately by small heating till a clear solution was obtained. The reaction mixture was heated further for half an hour at around 40°C and was allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Light brown coloured block shaped crystals of OPDPHB, suitable for single crystal X-ray structure determinations were obtained after 1 week.

Salt OPDPHB was also prepared by liquid assisted grinding (LAG) of o-phenylenediamine (OPDA) (54 mg, 0.5 mmol) and p-hydroxybenzoic acid (69 mg, 0.5 mmol) in 1:1 molar ratio with 3 drops of

acetonitrile. The mixture was ground for 20 minutes using mortar and pestle and the powdered product was collected for PXRD studies.

S1.4. Synthesis of OPDPNB:

OPDPNB was synthesized by taking an equimolar mixture of *ortho*-phenylenediamine (540 mg) in 10 mL of acetonitrile and p-nitrobenzoic acid (835 mg) in 15 mL of methanol which was dissolved, filtered (noticed that in the methanol the acid was not dissolved completely, but after adding the amine, it results in a clear mixture of both) and allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Light brown color plate-shaped crystals of OPDPNB suitable for single crystal X-ray structure determination were obtained after one week.

Salt OPDPNB was also prepared by liquid assisted grinding (LAG) of o-phenylenediamine (OPDA) (54 mg, 0.5 mmol) and 4-NBA (83.6 mg, 0.5 mmol) in 1:1 molar ratio with 3 drops of acetonitrile. The mixture was ground for 20 minutes using mortar and pestle and the powdered product was collected for PXRD studies.

Synthesis of OPDDNB:

OPDDNB was synthesized by taking an equimolar mixture of *ortho*-phenylenediamine (108 mg) in 5 mL of acetonitrile and 3,5–dinitrobenzoic acid (212 mg) in 5 mL of methanol which was dissolved, filtered and allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Yellow colored block shaped crystals of OPDDNB, suitable for single crystal X-ray structure determinations were crystallized after two weeks.

Salt OPDDNB was also prepared by liquid assisted grinding (LAG) of o-phenylenediamine (OPDA) (54 mg, 0.5 mmol) and 3,5-DNBA (106 mg, 0.5 mmol) in 1:1 molar ratio with 3 drops of acetonitrile. The mixture was ground for 20 minutes using mortar and pestle and the powdered product was collected for PXRD studies.

Synthesis of OPDPHB 3P: 120 mg of LAG powder of OPDPHB was dissolved in 15 mL of methanol, gently heated for about 5 minutes with stirring and the solution was then allowed to evaporate slowly at room temperature by covering with aluminium foil which was punctured with small holes. Light brown coloured block shaped crystals of OPDPHB, suitable for single crystal X-ray structure determinations were obtained after 1 week.

Single crystal X-ray diffraction of OPDPHB 3P

Intensity data for OPDPHB (3P) was collected on Rigaku (Xta LAB mini II) diffractometer equipped with air-cooled HPC detector using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at room temperature. Data were collected and reduced by using the "CrysAlispro" program (CrysAlisPro, 2015).

An empirical absorption correction using spherical harmonics was implemented in the "SCALE3 ABSPACK" scaling algorithm. Using Olex2 (Dolomanov *et al.*, 2009), the structure was solved with the ShelXS (Sheldrick, 2008) structure solution program using Direct Methods and refined with the ShelXL (Sheldrick, 2015) refinement package using Least Squares minimisation. All non-hydrogen atoms were refined anisotropically. Crystal data, data collection and structure refinement details are summarized in Table S1.

	(OPDP) 1	(OPDS) 2	(OPDPHB) 3	(OPDPNB) 4
Crystal data				
Chemical formula	$C_6H_9N_2 \cdot C_8H_5O_4$	$C_7H_5O_3 \cdot C_6H_9N_2$	$C_6H_9N_2 \cdot C_7H_6O_3 \cdot C_6H_8N_2 \cdot C_7H_5O_3$	$C_6H_9N_2{\cdot}C_7H_4NO_4$
$M_{ m r}$	274.27	246.26	492.52	275.26
Crystal system, space group	Triclinic, P-1	Monoclinic, $P2_1/c$	Triclinic, P-1	Monoclinic, P2 ₁
Temperature (K)	298	298	298	298
a, b, c (Å)	4.101 (2), 11.892 (7), 13.092 (8)	4.7832 (7), 11.6783 (17), 21.859 (3)	9.9374 (5), 14.3212 (6), 18.2929 (11)	8.881 (2), 6.0754 (16), 11.995 (3)
α, β, γ (°)	93.491 (9), 97.769 (10), 90.28 (1)	90, 93.999 (2), 90	72.196 (4), 81.185 (5), 82.068 (4)	90, 91.021 (4), 90
$V(Å^3)$	631.4 (6)	1218.1 (3)	2437.9 (2)	647.1 (3)
Ζ	2	4	4	2
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Cu <i>K</i> α	Μο <i>Κ</i> α
$\mu (mm^{-1})$	0.11	0.10	0.80	0.11
Crystal size (mm)	0.34 × 0.28 × 0.22	0.42 × 0.36 × 0.32	$0.32 \times 0.28 \times 0.22$	$0.38 \times 0.12 \times 0.09$

Table S1Experimental details

Data collection

Diffractometer	Bruker Apex CCD area detector	Bruker Apex CCD area detector	Xcalibur, Eos, Gemini	Bruker Apex CCD area detector
Absorption correction	Multi-scan SADABS	Multi-scan SADABS	Multi-scan CrysAlis PRO	Multi-scan SADABS
T_{\min}, T_{\max}	0.977, 0.964	0.867, 0.876	0.301, 1.000	0.960, 0.990
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6461, 2454, 2083	13780, 2926, 2396	15886, 9322, 7257	2914, 2026, 1635
R _{int}	0.022	0.035	0.023	0.018
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.617	0.667	0.618	0.594
Refinement				
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.044, 0.122, 1.05	0.049, 0.131, 1.08	0.048, 0.135, 1.04	0.050, 0.126, 1.04
No. of reflections	2454	2926	9322	2026
No. of parameters	205	188	690	201
No. of restraints	2	0	0	5
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.18, -0.18	0.24, -0.22	0.20, -0.29	0.16, -0.16

Absolute structure	NA	NA	NA		Flack x determined using 533 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).	
Absolute structure parameter	NA	NA	NA		0.2 (10)	
		(OPDDNB) 5		(OPDPHB) 3P		
Crystal data						
Chemical form	ula	$C_6H_9N_2 \cdot C_7H_3N_2O_6$		$C_6H_9N_2 \cdot C_7H_6O_3 \cdot C_6H_8N_2$		
M _r		320.27		354.40		
Crystal system, space group		Monoclinic, $P2_1/c$		Monoclinic, P2 ₁		
Temperature (K	()	298		298		
a, b, c (Å)		11.9565 (10), 5.7973 (5), 20.2355 (16)		8.628(2), 5.7938(16), 18.172(4)		
α, β, γ (°)		90, 96.805 (1), 90		90, 90.69(2), 90		
$V(\text{\AA}^3)$		1392.8 (2)		908.3(4)		
Ζ		4		2		
Radiation type		Μο Κα		Μο Κα		
μ (mm ⁻¹)		0.12		0.090		
Crystal size (mm)		0.4 imes 0.32 imes 0.22		$0.21\times0.18\times0.08$		
Data collection						
Diffractometer		CCD area detector		Xta LAB Mini II		
Absorption correction		Multi-scan SADABS		Multi-scan CrysAlis PRO 1.171.39.20a		

CrysAlis PRO 1.171.39.20a

T_{\min}, T_{\max}	0.952, 0.973	0.749, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8392, 2720, 2255	3528, 2044, 1811
$R_{\rm int}$	0.022	0.040
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.617	0.556
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.103, 1.03	0.045, 0.143, 1.11
No. of reflections	2720	2044
No. of parameters	229	266
No. of restraints	1	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.20, -0.22	0.22, -0.21
Absolute structure	NA	Flack x determined using 548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Absolute structure parameter	NA	-0.6 (10)

Computer programs: Bruker *SMART*, *CrysAlis PRO*, Agilent Technologies, Version 1.171.37.35h (release 09-02-2015 CrysAlis171 .NET) (compiled Feb 9 2015, 16:26:32), *SAINT* v6.45A (Bruker, 2003), Bruker *SAINT*, *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015), Olex2 (Dolomanov *et al.*, 2009).

Table S2Hydrogen-bond geometry (Å, °) for (OPDPHB 3P)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O3— $H3C$ ···N4 ⁱ	0.82	2.00	2.807 (6)	166
N3—H3 <i>B</i> ····O3 ⁱⁱ	0.87	2.62	3.421 (5)	154
N1—H1A····O1 ⁱ	0.81 (6)	1.92 (6)	2.713 (6)	165

N1—H1 B ····O2 ⁱⁱ	1.11 (6)	1.74 (7)	2.821 (5)	164
N1—H1 <i>C</i> ····O2	1.04 (6)	1.67 (6)	2.688 (5)	165
N2—H2A…O1	1.02 (8)	2.33 (7)	3.203 (7)	143
N4—H4A····O3 ⁱⁱⁱ	0.83 (5)	2.28 (5)	3.060 (6)	157

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+1, *y*-1/2, -*z*+1; (iii) *x*, *y*, *z*-1.

OPDP OPDP C13 O1 1.233(2) C2 C1 N1 118.96(15) C13 O2 1.263(2) C6 C1 N1 119.39(14) C14 O3 1.224(2) N2 C2 C1 121.59(15) C14 O4 1.279(2) O1 C13 C7 119.03(14) C1 N1 1.461 (2) O1 C13 O2 121.09(16) C2 N2 1.378(2) O2 C13 C7 119.88(14) OPDS O3 C14 C8 119.00(15) C13 O2 121.65(14) C13 O1 1.2527(16) O3 C14 C8 121.65(14) C13 O2 1.2693(16) O4 C14 C8 121.65(14) C1 N1 1.4627(16) OB C2 N2 1.263(13) O3 C8 C7 121.63(13) O3 C8 C9 118.38(15)	Atom 1	Atom 2	Bond length/ Å	Atom 1	Atom 2	Atom 3	Bond angle/ °
C13 O1 1.233(2) C2 C1 N1 118.96(15) C13 O2 1.263(2) C6 C1 N1 119.39(14) C14 O3 1.224(2) N2 C2 C3 121.12(16) C14 O4 1.279(2) O1 C13 C7 119.03(14) C1 N1 1.461 (2) O1 C13 C7 119.03(14) C1 N1 1.461 (2) O1 C13 O2 121.09(16) C2 N2 1.378(2) O2 C13 C7 119.88(14) OPDS N2 1.2527(16) O3 C14 O4 119.94(15) C13 O1 1.2527(16) O3 C14 C4 121.65(14) C13 O2 1.2693(16) O4 C14 C4 121.65(13) C14 N1 1.4627(16) O4 C14 C4 121.65(14) C14 N1 1.4627(16) O3 C8 C7 119.52(1) C1A N1A 1.464(2)	OPDP			OPDP			
C13O21.263(2)C6C1N1119.39(14)C14O31.224(2)N2C2C1121.59(15)C14O41.279(2)O1C13C7119.03(14)C1N11.461 (2)O1C13O2121.09(16)C2N21.378(2)O2C13C7119.88(14)OPDS011.2527(16)O3C14C8119.00(15)C13O11.2527(16)O3C14O4119.34(15)C13O21.2693(16)O4C14C8121.65(14)C1N11.4627(16)OPDSC13C7121.63(13)C2N21.3951(19)O3C8C7121.63(13)OPDPHB03C8C7119.52(11)C1302122.62(12)C1AN1A1.464(2)O1C13C7119.52(11)C2AN2A1.404(2)O2C13C7119.52(11)C2AN2A1.404(2)O2C13C7119.52(11)C2AN2A1.410(2)C2C1N1118.70(11)C2BN2B1.410(2)C2AC1AN1A120.87(15)C1GN1C1.413(2)C2AC1AN1A120.87(15)C1AN1A1.452(2)C6AC1AN1A117.23(17)C2BN2D1.413(2)C6AC1AN1A119.3(18)C1CN1D1.423(2)C6AC1	C13	01	1.233(2)	C2	C1	N1	118.96(15)
C14O31.224(2)N2C2C1121.59(15)C14O41.279(2)O1C13C7119.03(14)C1N11.461 (2)O1C13O2121.09(16)C2N21.378(2)O2C13C7119.88(14)OPDSO3C14C8119.00(15)C13O11.2527(16)O3C14C8121.65(14)C13O21.2693(16)O4C14C8121.65(14)C1N11.4627(16)OPDSC1AN11.4627(16)OPDS122.62(12)C1AN1A1.464(2)O1C13O2122.62(12)C1AN1A1.464(2)O1C13C7119.52(11)C2AN2A1.404(2)O2C13C7119.52(11)C2BN2B1.410(2)C3C2N2122.04(13)C1CN1C1.413(2)OPDPHB120.87(15)C1DN1D1.423(2)C6AC1AN1A120.87(15)C1DN1D1.423(2)C6AC1AN1A117.23(17)C2DN2D1.413(2)C1AC2AN2A119.73(18)C1OCO3C1.3647(19)C6BC1BN1B119.80(18)C1ODO3D1.363(2)C1BC2BN2B120.93(17)C13AO1A1.211(2)C3BC2BN2B121.66(19)C	C13	O2	1.263(2)	C6	C1	N1	119.39(14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C14	03	1.224(2)	N2	C2	C1	121.59(15)
C1 C1 C1 C1 C1 C1 C1 C1 C1 D1 C13 C7 D19.03(14) C1 N1 1.461 (2) O1 C13 O2 121.09(16) C2 N2 1.378(2) O2 C13 C7 119.88(14) OPDS O3 C14 C8 D19.00(15) C13 O1 1.2527(16) O3 C14 O4 119.34(15) C13 O2 1.2693(16) O4 C14 C8 121.65(14) C1 N1 1.4627(16) OPDS	C14	04	1.229(2)	N2	C2	C3	121.12(16)
C1 N1 1.401 (2) O1 C13 O2 121.09(16) C2 N2 1.378(2) O2 C13 C7 119.88(14) OPDS 03 C14 C8 119.00(15) C13 O1 1.2527(16) O3 C14 O4 119.34(15) C13 O2 1.2693(16) O4 C14 C8 121.65(14) C1 N1 1.4627(16) OPDS - 121.63(13) O C2 N2 1.3951(19) O3 C8 C7 121.63(13) OPDPHB - O1 C13 O2 122.62(12) C1A N1A 1.464(2) O1 C13 C7 119.52(11) C2A N2A 1.404(2) O2 C13 C7 119.52(11) C2A N2A 1.404(2) C2 C1 N1 118.70(11) C2B N2B 1.410(2) C3 C2 N2 122.04(13)	C1	N1	1.279(2)	01	C13	C7	119.03(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NI NO	1.401 (2)	01	C13	O2	121.09(16)
OPDS O3 C14 C8 119.00(15) C13 O1 1.2527(16) O3 C14 O4 119.34(15) C13 O2 1.2693(16) O4 C14 C8 121.65(14) C1 N1 1.4627(16) OPDS C14 C8 121.65(14) C2 N2 1.3951(19) O3 C8 C7 121.63(13) OPDPHB 03 C8 C9 118.38(15) O1 C13 O2 122.62(12) C1A N1A 1.464(2) O1 C13 C7 119.52(11) C2A N2A 1.404(2) O2 C13 C7 119.52(11) C2B N2B 1.410(2) C3 C2 N2 122.04(13) C1C N1C 1.413(2) OPDPHB I22.04(13) I22.04(13) C1C N1C 1.413(2) C6A C1A N1A 117.23(17) C2C N2D 1.413(2) C6A <td>C2</td> <td>N2</td> <td>1.378(2)</td> <td>O2</td> <td>C13</td> <td>C7</td> <td>119.88(14)</td>	C2	N2	1.378(2)	O2	C13	C7	119.88(14)
C13 O1 $1.2527(16)$ O3 C14 O4 $119.34(15)$ C13 O2 $1.2693(16)$ O4 C14 C8 $121.65(14)$ C1 N1 $1.4627(16)$ OPDS	OPDS			03	C14	C8	119.00(15)
C13O21.2693(16)O4C14C8121.65(14)C1N11.4627(16)OPDSC2N21.3951(19)O3C8C7121.63(13)OPDPHB03C8C9118.38(15)O1C13O2122.62(12)C1AN1A1.464(2)O1C13C7119.52(11)C2AN2A1.404(2)O2C13C7117.85(12)C1BN1B1.456(2)C2C1N1118.70(11)C2BN2B1.410(2)C3C2N2122.04(13)C1CN1C1.413(2)OPDPHBUUUC2DN2D1.413(2)C2AC1AN1A117.23(17)C10AO3A1.362(2)C3AC2AN2A119.73(18)C10DO3D1.363(2)C1BC1BN1B119.80(18)C10DO3D1.363(2)C1BC1BN1B119.80(18)C10AO2A1.309(2)O3AC10AC9A117.99(16)C13AO1A1.247(2)O3AC10AC9A117.99(16)C13BO1B1.247(2)O3AC10AC1A122.35(17)C13BO2B1.270(2)O1AC13AC7A122.69(17)O1AC13AO2A121.69(17)O1AC13AO2A121.69(17)	C13	01	1.2527(16)	03	C14	O4	119.34(15)
C1 N1 1.4627(16) OPDS C2 N2 1.3951(19) O3 C8 C7 121.63(13) OPDPHB 01 C13 O2 122.62(12) C1A N1A 1.464(2) O1 C13 C7 119.52(11) C2A N2A 1.404(2) O2 C13 C7 117.85(12) C1B N1B 1.456(2) C2 C1 N1 118.70(11) C2B N2B 1.410(2) C3 C2 N2 122.04(13) C1C N1C 1.413(2) C3 C2 N2 122.04(13) C1D N1D 1.423(2) C6A C1A N1A 120.87(15) C1D N1D 1.423(2) C6A C1A N1A 117.23(17) C2D N2D 1.413(2) C4A N2A 122.58(16) C1OA O3A 1.362(2) C1A C1A N1A 117.23(17) C1OA O3A 1.363(2) C1B N1B 119.80(18) 119.80(18) C10A	C13	O2	1.2693(16)	04	C14	C8	121.65(14)
C2 N2 $1.3951(19)$ O3 C8 C7 $121.63(13)$ OPDPHB 03 C8 C9 $118.38(15)$ C1A N1A $1.464(2)$ O1 C13 O2 $122.62(12)$ C1A N1A $1.464(2)$ O1 C13 C7 $119.52(11)$ C2A N2A $1.404(2)$ O2 C13 C7 $117.85(12)$ C1B N1B $1.456(2)$ C2 C1 N1 $118.70(11)$ C2B N2B $1.410(2)$ C3 C2 N2 $122.04(13)$ C1C N1C $1.413(2)$ OPDPHB $$	C1	N1	1.4627(16)	OPDS			
OPDPHB O3 C8 C9 118.38(15) C1A N1A 1.464(2) O1 C13 O2 122.62(12) C1A N1A 1.404(2) O1 C13 C7 119.52(11) C2A N2A 1.404(2) O2 C13 C7 117.85(12) C1B N1B 1.456(2) C2 C1 N1 118.70(11) C2B N2B 1.410(2) C3 C2 N2 122.04(13) C1C N1C 1.413(2) OPDPHB V V 120.87(15) C1D N1D 1.423(2) C6A C1A N1A 120.87(15) C1D N1D 1.423(2) C6A C1A N1A 117.23(17) C2D N2D 1.413(2) C1A C2A N2A 122.58(16) C10A O3A 1.362(2) C1A C2B N2A 119.73(18) C10A O3D 1.363(2) C1B C1B N1B	C2	N2	1.3951(19)	03	C8	C7	121.63(13)
C1AN1A $1.464(2)$ O1C13O2 $122.62(12)$ C2AN2A $1.404(2)$ O1C13C7 $119.52(11)$ C2AN2A $1.404(2)$ O2C13C7 $117.85(12)$ C1BN1B $1.456(2)$ C2C1N1 $118.70(11)$ C2BN2B $1.410(2)$ C3C2N2 $122.04(13)$ C1CN1C $1.413(2)$ OPDPHB $$	OPDPHE	3		03	C8	C9	118.38(15)
C2AN2A1.404(2)O2C13C7119.52(11)C1BN1B1.456(2)C2C13C7117.85(12)C1BN1B1.456(2)C2C1N1118.70(11)C2BN2B1.410(2)C3C2N2122.04(13)C1CN1C1.413(2)OPDPHBC2CN2C1.415(2)C2AC1AN1A120.87(15)C1DN1D1.423(2)C6AC1AN1A117.23(17)C2DN2D1.413(2)C1AC2AN2A122.58(16)C1OAO3A1.362(2)C3AC2AN2A119.73(18)C1OCO3C1.3647(19)C6BC1BN1B119.80(18)C1ODO3D1.363(2)C1BC2BN2B120.93(17)C13AO1A1.211(2)C3BC2BN2B121.66(19)C13BO1B1.247(2)O3AC10AC11A122.35(17)C13BO2B1.270(2)O1AC13AO7A122.69(17)O1AC13AO2A121.69(17)01AC13A02A121.69(17)	C1A	N1A	1.464(2)	01	C13	02	122.62(12)
C1BN1B $1.456(2)$ 02 $C13$ $C7$ $117.85(12)$ C1BN1B $1.456(2)$ C2C1N1 $118.70(11)$ C2BN2B $1.410(2)$ C3C2N2 $122.04(13)$ C1CN1C $1.413(2)$ OPDPHB $122.04(13)$ $122.04(13)$ C1CN1C $1.413(2)$ C2AC1AN1A $120.87(15)$ C1DN1D $1.423(2)$ C6AC1AN1A $117.23(17)$ C2DN2D $1.413(2)$ C1AC2AN2A $122.58(16)$ C10AO3A $1.362(2)$ C3AC2AN2A $119.73(18)$ C10CO3C $1.3647(19)$ C6BC1BN1B $119.80(18)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AO2A $121.69(17)$	C2A	N2A	1.404(2)	01	C13	C7	119.52(11)
N1D 1.150(2) C2 C1 N1 118.70(11) C2B N2B 1.410(2) C3 C2 N2 122.04(13) C1C N1C 1.413(2) OPDPHB 122.04(13) 120.87(15) C1D N1D 1.423(2) C6A C1A N1A 120.87(15) C1D N1D 1.423(2) C6A C1A N1A 117.23(17) C2D N2D 1.413(2) C1A C2A N2A 122.58(16) C10A O3A 1.362(2) C3A C2A N2A 119.73(18) C10C O3C 1.3647(19) C6B C1B N1B 119.80(18) C10D O3D 1.363(2) C1B C2B N2B 120.93(17) C13A O1A 1.211(2) C3B C2B N2B 121.66(19) C13A O2A 1.309(2) O3A C10A C9A 117.99(16) C13B O1B 1.247(2) O3A C10A C11A 122.35(17) C13B O2B 1.270(2) O1A <td>C1B</td> <td>N1B</td> <td>1 456(2)</td> <td>02</td> <td>C13</td> <td>C/</td> <td>117.85(12)</td>	C1B	N1B	1 456(2)	02	C13	C/	117.85(12)
C2BN2B $1.410(2)$ C3C2N2 $122.04(13)$ C1CN1C $1.413(2)$ OPDPHB C2CN2C $1.415(2)$ C2AC1AN1A $120.87(15)$ C1DN1D $1.423(2)$ C6AC1AN1A $117.23(17)$ C2DN2D $1.413(2)$ C1AC2AN2A $122.58(16)$ C10AO3A $1.362(2)$ C3AC2AN2A $119.73(18)$ C10CO3C $1.3647(19)$ C6BC1BN1B $119.18(16)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AO2A $121.69(17)$	~2B	N2B	1.130(2)	C2		NI NO	118.70(11)
C1CN1C $1.413(2)$ OFDERSC2CN2C $1.415(2)$ C2AC1AN1A $120.87(15)$ C1DN1D $1.423(2)$ C6AC1AN1A $117.23(17)$ C2DN2D $1.413(2)$ C1AC2AN2A $122.58(16)$ C10AO3A $1.362(2)$ C3AC2AN2A $119.73(18)$ C10CO3C $1.3647(19)$ C6BC1BN1B $119.80(18)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AO2A $121.69(17)$	C1C	N1C	1.410(2)	ODDDIII	0.2	IN2	122.04(13)
C2CN2C1.415(2)C2AC1AN1A120.87(13)C1DN1D1.423(2)C6AC1AN1A117.23(17)C2DN2D1.413(2)C1AC2AN2A122.58(16)C10AO3A1.362(2)C3AC2AN2A119.73(18)C10CO3C1.3647(19)C6BC1BN1B119.18(16)C10DO3D1.363(2)C1BC2BN2B120.93(17)C13AO1A1.211(2)C3BC2BN2B121.66(19)C13BO1B1.247(2)O3AC10AC11A122.35(17)C13BO2B1.270(2)O1AC13AO2A121.69(17)		NIC	1.415(2)	C2A	C 1A	N1 A	120 87(15)
C1DN1D $1.423(2)$ C0AC1AN1A $11.23(17)$ C2DN2D $1.413(2)$ C1AC2AN2A $122.58(16)$ C10AO3A $1.362(2)$ C3AC2AN2A $119.73(18)$ C10CO3C $1.3647(19)$ C6BC1BN1B $119.80(18)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13AO2A $1.309(2)$ O3AC10AC9A $117.99(16)$ C13BO1B $1.247(2)$ O1AC13AC7A $122.69(17)$ O1AC13AO2A $1.270(2)$ O1AC13AO2A $121.69(17)$	C2C	N2C	1.415(2)	C6A	CIA CIA	N1A	120.07(13) 117 23(17)
C2DN2D $1.413(2)$ C1AC2AN2A $122.50(10)$ C10AO3A $1.362(2)$ C3AC2AN2A $119.73(18)$ C10CO3C $1.3647(19)$ C6BC1BN1B $119.18(16)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13AO2A $1.309(2)$ O3AC10AC9A $117.99(16)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AO2A $121.69(17)$	CID	N1D	1.423(2)	C1A	C2A	N2A	122.58(16)
C10AO3A $1.362(2)$ C3AC2AN2A $117.75(18)$ C10CO3C $1.3647(19)$ C2BC1BN1B $119.18(16)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13AO2A $1.309(2)$ O3AC10AC9A $117.99(16)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AO2A $121.69(17)$	C2D	N2D	1.413(2)	C3A	C2A	N2A	119 73(18)
C1OCO3C $1.3647(19)$ C6BC1B 1.136 $117.16(16)$ C10DO3D $1.363(2)$ C6BC1BN1B $119.80(18)$ C10DO3D $1.363(2)$ C1BC2BN2B $120.93(17)$ C13AO1A $1.211(2)$ C3BC2BN2B $121.66(19)$ C13AO2A $1.309(2)$ O3AC10AC9A $117.99(16)$ C13BO1B $1.247(2)$ O3AC10AC11A $122.35(17)$ C13BO2B $1.270(2)$ O1AC13AC7A $122.69(17)$ O1AC13AO2A $121.69(17)$	C10A	O3A	1.362(2)	C2B	C1B	NIB	119.18(16)
C10D O3D 1.363(2) C1B C1B T1D T1D.00(10) C13A O1A 1.211(2) C3B C2B N2B 120.93(17) C13A O2A 1.309(2) C3B C2B N2B 121.66(19) C13B O1B 1.247(2) O3A C10A C9A 117.99(16) C13B O2B 1.270(2) O1A C13A C7A 122.69(17) O1A C13A O2A 1.270(2) O1A C13A O2A 121.69(17)	C10C	O3C	1.3647(19)	C6B	C1B	NIB	119.80(18)
C13A O1A 1.211(2) C3B C2B N2B 121.66(19) C13A O2A 1.309(2) O3A C10A C9A 117.99(16) C13B O1B 1.247(2) O3A C10A C11A 122.35(17) C13B O2B 1.270(2) O1A C13A C7A 122.69(17) O1A C13A O2A 121.69(17) O1A C13A O2A 121.69(17)	C10D	O3D	1.363(2)	C1B	C2B	N2B	120.93(17)
C13A O2A 1.309(2) O3A C10A C9A 117.99(16) C13B O1B 1.247(2) O3A C10A C11A 122.35(17) C13B O2B 1.270(2) O1A C13A C7A 122.69(17) O1A C13A O2A 121.69(17) O1A C13A O2A 121.69(17)	C13A	O1A	1.211(2)	C3B	C2B	N2B	121.66(19)
C13B O1B 1.247(2) O3A C10A C11A 122.35(17) C13B O2B 1.270(2) O1A C13A C7A 122.69(17) O1A C13A O2A 121.69(17)	C13A	O2A	1.309(2)	O3A	C10A	C9A	117.99(16)
C13B O2B 1.270(2) O1A C13A C7A 122.69(17) O1A C13A O2A 121.69(17)	C13B	O1B	1.247(2)	O3A	C10A	C11A	122.35(17)
OIA CI3A O2A 121.69(17)	C13B	O2B	1.270(2)	O1A	C13A	C7A	122.69(17)
	2120	020	1.2, 5(2)	O1A	C13A	O2A	121.69(17)

Table S3Important bond lengths and angles of salts 1-5 along with the polymorph (OPDPHB 3P)

C13C	01C	1.245(2)	O2A	C13A	C7A	115.62(15)
C13C	O2C	1.265(2)	C2C	C1C	N1C	120.30(17)
C13D	O1D	1.221(2)	C6C	C1C	N1C	119.89(19)
C13D	O2D	1.299(2)	C1C	C2C	N2C	119.85(17)
OPDPN	R		C3C	C2C	N2C	121.87(19)
C1	D N1	1 466(5)	C2D	C1D	N1D	120.54(17)
	NI NO	1.400(3)	C6D	C1D	N1D	120.25(18)
C2	N2	1.391(6)	C1D	C2D	N2D	119.88(16)
C10	N3	1.473(6)	C3D	C2D	N2D	120.92(18)
C13	01	1.252(5)	O3D	C10D	C9D	117.85(16)
C13	O2	1.259(5)	O3D	C10D	C11D	122.47(17)
N3	03	1.202(7)	O1D	C13D	C7D	121.39(18)
N3	O4	1.203(6)	O1D	C13D	O2D	123.43(18)
OPDDN	В		O2D	C13D	C7D	115.18(16)
C1	N1	1.4645(18)	O3C	C10C	C9C	117.76(15)
C^2	N2	1 414(2)	O3C	C10C	C11C	122.55(16)
C2	N2	1.4669(19)	01C	C13C	C7C	117.09(16)
C9	INS NA	1.4008(18)	01C	C13C	O2C	123.80(16)
CII	N4	1.4689(19)	O2C	C13C	C7C	119.08(15)
C13	01	1.2364(18)	O3B	C10B	C9B	122.67(18)
C13	O2	1.2488(17)	O3B	C10B	C11B	117.72(17)
N3	O3	1.2182(18)	O1B	C13B	C7B	118.82(18)
N3	O4	1.2231(17)	O1B	C13B	O2B	123.85(18)
N4	05	1.2160(17)	O2B	C13B	C7B	117.33(16)
N4	06	1.2228(18)	OPDPN	B		
OPDDN	B 3P		C2	C1	N1	117.9(3)
C1	N1	1 462(6)	C6	C1	N1	120.4(4)
C2	N2	1.392(6)	C3	C2	N2	121.7(4)
C7	N3	1.397(6)	N2	C2	CI	121.6(4)
C8 C19	N4 O1	1.412(6)	C9	C10	N3	119.0(5)
C19	02	1.269(5)	CII	C10	N3	118.5(5)
C16	03	1.374(5)	01	C13	C/	117.6(4)
			01	C13	02	124.7(4)
			02	C13	C/	117.7(4)
			03	N3	C10	118.5(6)
			03	N3	04	122.8(5)
			04	N3	C10	118.6(5)
			OPDDN	AR O	N71	110.04/12
			C2		IN I	118.94(13)
			C6		NI NO	119.34(13)
			C1	C2	N2	119.97(13)
			C3	C2	N2	122.45(14)
			C8	C9	N3	118.57(13)
			C10	C9	N3	118.09(13)

C10	C11	N4	118.14(13)
C12	C11	N4	119.12(13)
01	C13	C7	117.17(13)
O1	C13	O2	125.65(14)
O2	C13	C7	117.18(13)
O3	N3	C9	117.99(13)
O3	N3	O4	123.65(13)
O4	N3	C9	118.36(13)
O5	N4	C11	118.36(14)
O5	N4	O6	123.86(13)
O6	N4	C11	117.78(13)
OPDD	NB 3P		
C1	C2	N2	120.7(4)
C2	C1	N1	118.5(4)
C6	C1	N1	119.2(4)
C7	C8	N4	119.0(4)
C8	C7	N3	118.3(4)
C9	C8	N4	121.5(4)
C12	C7	N3	122.8(4)
C15	C16	O3	118.0(4)
N2	C2	C3	121.5(4)
01	C19	O2	124.0(4)
01	C19	C13	119.1(5)
O2	C19	C13	117.0(4)
O3	C16	C17	121.0(4)

Figure S1 PXRD patterns drawn from the results obtained by 1:1 LAG experiment of the respective salts along with Computed patterns of the respective CIF file.

Figure S2 Comparative PXRD patterns drawn from the ground crystals of the respective salts and Computed patterns of the respective CIF file.

Figure S3 DSC and TGA curve of salts 1-5.

Figure S4 FTIR spectrum of salts 1-5.

Figure S5 2D supramolecular network of OPDPHB, showing along crystallographic *bc* plane using two types of N–H…O interactions.

Figure S6 The asymmetric unit of OPDPHB 3P with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level except for the H atoms, which are shown as circles of arbitrary radius.

Figure S7 Formation of ladder network assisted by $R_4^3(10)$ heterosynthons along with right handed helices exists alternatively which runs along crystallographic b axis

OPDP

OPDS

Figure S8 Hirshfeld surfaces mapped with d_{norm} ranging from -0.5 (red) to 1.5 Å (blue).